PYTHON IN HIGH-ENERGY PHYSICS

Hans Dembinski, MPIK Heidelberg
21 Mar 2019
ABOUT ME

• Cosmic ray/HEP physicist now in LHCb
• Trying to solve the Muon Puzzle in air showers
• Active in the Boost C++ and Scikit-HEP Python communities
• My OSS projects
 ▪ Boost::Histogram
 ▪ pyhepmc
 ▪ iminuit (maintainer)
TAKE-HOME MESSAGE

- HEP software is still dominantly C++ (ROOT)…
 - … but half the analyses in LHCb already in Python (survey 2018)
 - Next major release ROOT 7 will resolve fundamental design issues

- OSS initiatives in Python and C++ offer alternatives to ROOT
 - Scikit-HEP Project: uproot, iminuit, …
 - Boost::Histogram with Python frontend

- Bright future for Python in HEP
 - Python can easily bind to C++ libraries with pybind11
 - Python itself can be made fast with Numba
 - Growth of Python ecosphere outperforms growth of C++ ecosphere
HIGH-ENERGY PHYSICS

Big Data: billions of events, Petabytes of data
- Need fast code to execute on computing clusters
- Hierarchical data structures: Trees (event variables, track variables)

Computing uses consumer hardware (no Crays)
- Run same code on laptop and cluster (almost)

Physicists traditionally prefer to use one language for everything
- Past: libraries and analysis code written in C++ (Fortran before)
- Current: write libraries in C++ and analysis code in C++ or Python
- Trend: more Python, less C++
ROOT FRAMEWORK

- Latest release 6.16/00
- Large meta-library
 - IO, data structures, histograms, fitting, graphics, databases, OS interaction, …

- High-level statistics tools
 - RooFit, RooStats, TMVA
WHAT ROOT DOES WELL

ROOT IO: TFile & TTree have no equal
- Portable binary hierarchical data format
- Transparent compression
- Allows partial reads & partial recovery from failed writes
- Fast interactive data exploration with TTree::Draw

Cling: ROOT’s C++ runtime interpreter
- Fully standard compliant (based on LLVM)
- Run C++ code like a script or compile for fast execution
- Replaced CINT from ROOT 5

PyROOT: Auto-generated Python bindings
- Wraps arbitrary C++ code to Python without extra effort (when it works)

Backward compatibility
ROOTBOOKS IN SWAN

Jupyter on top of CERNBox with Python and ROOT C++ kernels

```cpp
In [1]: #include <TH1D.h>
    #include <vector>

In [2]: auto h = TH1D("hist", ",", 10, 0.0, 10.0);

In [3]: for (auto x: std::vector<double>({1., 2., 3.})){
    h.Fill(x);
}

In [4]: h.GetMean()
   
   (double) 2.0000000
```
WHAT ROOT DOES NOT SO WELL

Brittle automatic memory management
- No. 1 user complaint, see my LHCb talk at ROOT Users’ Workshop, slide 11
- ROOT tried to replace the C++ standard and any library
 - Not-invented here syndrome and vendor lock-in
 - Standard interfaces duplicated in ROOT with added maintenance burden
 - Users forced to learn ROOT style instead of idiomatic C++

Maintenace nightmare
- Bugs bugs bugs, and many of them open for years
- Too small developer team for too large code base
- Little support from industry and OSS community

Design issues: leaking abstractions, lack of RAII, inconsistencies
AVERAGE BUG LIFETIME IN ROOT
DESIGN ISSUES

Actual ROOT code

```c++
TFile* outfile = new TFile(...); // stack allocation usually does not work
TH1D* histogram = new TH1D(...); // ROOT wants everything on the heap
// ...fill histogram...
histogram->Write(); // how does histogram know where to write to?
outfile->Close(); // histogram also silently deleted here?
delete outfile; // histogram also silently deleted here?
```

Desired ROOT code

```c++
TFile outfile("output.root", "recreate"); // stack allocation works
TH1D histogram(...);
// ...fill histogram...
outfile << histogram; // ostreaming, just like in std iostreams
outfile.close(); // no coupling of life-time of TFile and TH1D
```
THE FUTURE: ROOT 7

First release in 20 years to break backward-compatibility
- Required to fix historic mistakes in interfaces and memory management
- “We will use standard C++ types, standard interface behavior”

Nice new things
- RHist replaces previous histograms
- RDataFrame replaces TTree
- Better (automatic) parallelization
- Better graphics

Many talks about ROOT 7 at ROOT Users’ Workshop 2018
WHY ROOT 7 WILL NOT WIN THE DAY

- ROOT 7 is a big improvement, but...
- Big Data community is moving away from C++ towards Python
 - Industry-powered machine learning tools are in Python
 - ML tools draw people to Python ecosphere
 - Python gives you access to better and faster evolving libraries
 - Why would you ever go back?
- Manpower problem remains
 - Still large amounts of *tech debt* which binds manpower
 - Can either fix bugs or develop new features
 - Loosing race against other libraries which attract more manpower
 - ROOT core team are good people, but cannot compete with OSS community
 - Support unlikely to come from OSS community/industry
PYTHON

• Now the dominant language in scientific computing
 ▪ Comfortable syntax for analysis scripts
 ▪ Easy to learn and master
 ▪ Rich and vibrant ecosphere
 ○ NumPy, matplotlib, scipy, scikit-learn, pandas, Jupyter
 ○ Anaconda, PyTorch, TensorFlow, Keras, …
 ▪ Easy to write and distribute new libraries

• Adopted by industry leaders: Google, Instagram, Facebook, …
• Adopted by leading (astro)particle physics experiments
 ▪ IceCube Neutrino Observatory, CTA, CERN, …
Really, *everything*. Even CMake or pybind11.
GOOGLE TRENDS

data + X (worldwide)

- Python
- R
- C++

machine learning + X (worldwide)
BUT PYTHON IS SLOW...!

Source: The Benchmark Game
... OR IS IT?

- Use a fast Python library (written in C/C++, Fortran, …)
 - NumPy, CuPy, SciPy, …
- Use a JIT in your Python session: **Numba**
- Use a faster Python interpreter: **PyPy**
- Use Python as a glue language
 - Python configures and steers fast C/C++/Fortran code
 - Passes memory buffers from one library to the next
 - Examples: ROOT, LHCb Core Software, IceCube Framework…
 - Generate bindings with …
 - **pybind11**, cffi, f2py, ctypes, Cython, Boost.Python, SWIG, PyROOT, …
NUMPY

- SIMD programming: Single Instruction on Multiple Data
- Compute one array at a time instead of one value at the time
- Python loops and functions are slow, NumPy calls them in C

<table>
<thead>
<tr>
<th>Pro</th>
<th>Contra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy to use</td>
<td>Creates temporary arrays which could be avoided</td>
</tr>
<tr>
<td>Quite fast</td>
<td>Not so readable/fast when instruction has branches</td>
</tr>
<tr>
<td>Often compact readable code</td>
<td>Learning-curve: Thinking in arrays, NumPy API</td>
</tr>
</tbody>
</table>
import numpy as np
x = np.random.rand(1000)

good
a = 2 * x + 1
b = np.log(x ** 4)
c = x > 0.5 # creates a boolean array, can be used to filter x

not so good: compute 2 x if x < 2 and else x + 3
d = np.where(x < 2, 2 * x, x + 3)

- Doesn’t work when instructions differ for each element
 - MC simulation of multiple particle trajectories
 - Mandelbrot fractal (no. of iterations vary in each pixel)
NUMBA: JIT COMPILER FOR PYTHON

1. Translates Python code into AST (types are inferred)
2. Applies optimizations (vectorization, parallelization)
3. Compiles AST with LLVM into machine code

<table>
<thead>
<tr>
<th>Pro</th>
<th>Contra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy to use</td>
<td>Not all Python types supported</td>
</tr>
<tr>
<td>Really fast pythonic code</td>
<td>Only works on functions and methods (not classes)</td>
</tr>
<tr>
<td>Supports auto-parallelization</td>
<td>Learning-curve: understanding Numba errors</td>
</tr>
<tr>
<td>Supports GPU computation</td>
<td></td>
</tr>
<tr>
<td>Use NumPy as input and output</td>
<td></td>
</tr>
</tbody>
</table>

Numba is pretty smart: inlines nested JITed functions, …
Just import `njit` and decorate your function

```python
from numba import njit
import numpy as np
x = np.random.rand(1000)

def func_with_branch_numpy(x):  # 11 µs
    return np.where(x < 0.5, 2 * x, x + 3)

@njit
def func_with_branch_numba(x):  # 0.9 µs
    result = np.empty_like(x)
    for i, xi in enumerate(x):
        if xi < 0.5:
            result[i] = 2 * xi
        else:
            result[i] = xi + 3
    return result
```

Numba is **12x** faster than NumPy on my laptop
PYPY: JIT-ENABLED INTERPRETER

Alternative JIT-enabled Python interpreter written in RPython

<table>
<thead>
<tr>
<th>Pro</th>
<th>Contra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideally: Use PyPy and code gets fast</td>
<td>Not all Python libraries work: e.g. SciPy</td>
</tr>
<tr>
<td>Expressions are JIT-compiled as needed</td>
<td>A bit cumbersome to install</td>
</tr>
<tr>
<td>Can optimize classes</td>
<td>Lagging behind CPython syntax (stable: 3.5)</td>
</tr>
<tr>
<td>Can do global code optimizations</td>
<td>NumPy code may run slower</td>
</tr>
<tr>
<td>Numpy, matplotlib work</td>
<td>NumPyPy incomplete</td>
</tr>
</tbody>
</table>

- Expressions are JIT-compiled as needed
- Can optimize classes
- Can do global code optimizations
- Numpy, matplotlib work

- Not all Python libraries work: e.g. SciPy
- A bit cumbersome to install
- Lagging behind CPython syntax (stable: 3.5)
- NumPy code may run slower
- NumPyPy incomplete
Official Download and Install Page
Portable binaries for Linux

```
mkdir -p $HOME/pypy
URL = https://bitbucket.org/squeaky/portable-pypy/downloads/pypy3.5-7.0.0-linux_x86_64-portable.tar.bz2
wget -O - $URL | tar xjf --strip-components=1 -C $HOME/pypy
$HOME/pypy/bin/virtualenv-pypy $HOME/pypy/venv
source $HOME/pypy/venv/bin/activate
```

Mac OS X binary

```
mkdir -p $HOME/pypy
URL = https://bitbucket.org/pypy/pypy/downloads/pypy3.5-v7.0.0-osx64.tar.bz2
wget -O - $URL | tar xjf --strip-components=1 -C $HOME/pypy
pip install --user virtualenv
virtualenv $HOME/pypy/venv -p $HOME/pypy/bin/pypy3
source $HOME/pypy/venv/bin/activate
```
• PyPy3.5-7.0: 1.7x faster than NumPy in CPython
 - Numba in CPython 7x faster than PyPy3.5-7.0
• Could not compile NumPy on OSX (works on Linux)
 - setuptools doesn’t add -stdlib=libc++ on Darwin platform 😞

```python
import random
x = [random.uniform(0, 1) for i in range(1000)]

def func_with_branch(x):
    # 6.3 µs
    result = [0.0] * 1000  # using [0] * 1000 here gives a slowdown of 2!
    for i, xi in enumerate(x):
        if xi < 0.5:
            result[i] = 2 * xi
        else:
            result[i] = xi + 3
    return result
```

... but you can write plain pytonic code and it is fast
SCIKIT-HEP PROJECT

Online community which develops Python stack for HEP
- Supported by IRIS-HEP, NSF funded software institute
- Leading members from Princeton, Cincinnati U, Washington U...

Join us on Gitter: https://gitter.im/HSF/PyHEP
Scikit-HEP forum: scikit-hep-forum@googlegroups.com
On Github: https://github.com/scikit-hep
Home of uproot, iminuit, boost-histogram, particle, pyhepmc, …
UPROOT

Implementation ROOT I/O in pure Python and Numpy
Read/write ROOT trees, histograms, TGraphs, T(Lorentz)Vectors
Can read data fields of any other ROOT type
Up to 3x faster than C++ ROOT
Does not depend on C++ ROOT (just one pip install away)
Extensible, see uproot-methods repository
Powered by awkward-array
 - Hierarchical array implemented on top of standard Numpy arrays
 - See Jim Pivarski’s talk for interesting details
reading "Muon_pt" from uncompressed files
import numpy as np
import uproot

f = uproot.open("~/Data/sct/mc/00058786_00000001_5.sct.root")
print(f.keys())
[b'sct;6', b'sct;5']

f['sct'].show()
evt_run (no streamer) asdtype('>i4')
...
vtx_x (no streamer) asjagged(asdtype('>f4'))

f['sct/evt_evnum'].array()
array([5881230, 5881230, ..., 5878628, 5878628], dtype=int32)

pz = f['sct/trk_pz'].array()
<JaggedArray [[4186.4 5212.5 3073.3] [] [6479.1 3533.5] ...]>

from matplotlib import pyplot as plt
plt.hist(np.log10(pz.flatten())) # plot log10(pz) distribution

for pxi in f['sct/trk_px'].array(): print(np.mean(pxi))
150.75218 nan -79.71784 -120.3935 nan -146.99773 12.007137 ...
IMINUIT

The Python wrapper of C++ MINUIT2 library

- Other wrappers (pyminuit, pyminuit2) discontinued
- Bindings generated with Cython (will switch to pybind11)
- Python 2.7 to 3.7 on Linux, Mac, Windows
- New: PyPy support (PyPy3.5-7.0)

Does not depend on C++ ROOT

- Simply install with `pip` or `conda`

Many good OSS minimizers: scipy, libnlopt, …

MINUIT’s unique feature is error computation with Hesse & MINOS
from iminuit import Minuit

def f(x, y, z):
 return (x - 2) ** 2 + (y - 3) ** 2 + (z - 4) ** 2

m = Minuit(f) # Minuit automagically detects parameter names!
m.migrad() # run optimiser
print(m.values) # {'x': 2,'y': 3,'z': 4}

m.hesse() # run Hesse error estimator
print(m.errors) # {'x': 1,'y': 1,'z': 1}

- Minuit can do much more
 - Parameters with limits
 - Fixed parameters
 - Pretty Jupyter output
 - Built in plotting of error contours and function minimum
Python wrapper (alpha stage) for Boost::Histogram in C++

Boost::Histogram will be first released with Boost-1.70 in April

- Generalized multi-dimensional histograms and profiles in idiomatic C++14
- Use builtin axis types or add your own
 - regular, variable, circular, category; all growing or non-growing
 - Support for complex binning schemes, like hexagonal binning
- Easy and safe to use in default configuration
- Very customizable for power users
 - Get the highest speed for given task
 - Write new specialized axis and storage types that we didn’t think of
- TMP under the hood makes execution fast and interface easy to use
from boost.histogram import histogram
from boost.histogram.axis import regular, category

hist = histogram(category(("red", "blue")),
 regular(4, 0.0, 1.0))

input doesn't have to be numerical
hist(["red", "red", "blue"],
 [0.1, 0.4, 0.9])

counts = hist.view

returns numpy array view into histogram counts:
[[1, 1, 0, 0],
[0, 0, 0, 1]]
SUMMARY AND OUTLOOK

HEP software is still dominantly C++, but bright future for Python

- Python can be very fast with Numba
- Python can integrate with C/C++ libraries using pybind11
- If you can write fast code in Python, why would you use C++?

OSS initiatives in Python and C++ offer alternatives to ROOT

- **Scikit-HEP Project**: uproot, iminuit, …
- **Boost::Histogram** with Python frontend
- Specialized HEP-style plots in development, to be included in matplotlib
BACKUP: PYBIND11 VS. CYTHON

• Cython: transpiler for custom Python/C mixed dialect
 ▪ Learning curve: need to learn this dialect
 ▪ Designed for C; C++ only partially supported
 ▪ Clumsy syntax, workarounds needed for missing features and bugs
 ▪ Cython adds problems instead of solving them

• pybind11
 ▪ Based on the brilliant Boost::Python library
 ▪ No transpiler, just a header-only C++11 library
 ▪ Uses TMP to automate boilerplate code
 ▪ Automated handling of refcounts
 ▪ Full power of C++, no workarounds, explicit ownership of memory
 ▪ Excellent docs
#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>

namespace py = pybind11;

py::array_t<double> func_with_branch(py::array_t<double> x) {
 auto result = py::array_t<double>(x.shape(0));
 auto rd = result.mutable_data();
 auto xd = x.data();
 for (ssize_t i = 0, n = x.shape(0); i < n; ++i) {
 if (xd[i] < 0.5) {
 rd[i] = 2 * xd[i];
 } else {
 rd[i] = xd[i] + 3;
 }
 }
 return result;
}

PYBIND11_MODULE(example, m) {
 m.def("func_with_branch", &func_with_branch); // 1.7 µs (compiled with -O3)
}

6.5x faster than NumPy version, but **1.9x slower** than Numba