{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Confidence intervals\n", "\n", "In this notebook, we look at the confidence interval methods in `resample`. We try them on the median of an exponential distribution." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "jupyter": { "outputs_hidden": false, "source_hidden": false }, "nteract": { "transient": { "deleting": false } } }, "outputs": [], "source": [ "import numpy as np\n", "from resample.bootstrap import confidence_interval as ci, bootstrap\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "jupyter": { "outputs_hidden": false, "source_hidden": false }, "nteract": { "transient": { "deleting": false } } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGdCAYAAAAIbpn/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtXUlEQVR4nO3de3SU1b3/8c/kNgmQSwPkpgECcrMCxlBCvMGRVAIur/QolAoqhSpJi6QoB39FEFvipYoVEXQVA64qFE9brGhRCAZUwi0VFdQIMceokATBEBPMdfbvD0/mMCRIgpNMdni/1nrWmnmePfvZX3Ym+fBcZhzGGCMAAAAL+fl6AAAAAGeLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsFaArwdwNlwulw4dOqTQ0FA5HA5fDwcAALSAMUbffPON4uLi5OfnnWMpVgaZQ4cOKT4+3tfDAAAAZ+Hzzz/X+eef75W+rAwyoaGhkr77hwgLC/PxaNBSJ2rrNeIPOZKkXf9vjLoEtfOPX22V9NjA7x7/tkAK6tq++z+HffXVV+rXr5/HusLCQvXo0cNHI7JLq947/JyjA6uoqFB8fLz777g3WBlkGk8nhYWFEWQsElBbLz9nF0nfzV37Bxl/yfm/pyLDwvgF345qamqarAsNDeX920Kteu/wcw4LePOyEC72BQAA1iLIAAAAaxFkAACAtay8RgYA0Dk0NDSorq7O18OAl/j7+ysgIKBdPxqFIAMA8InKykp98cUXMsb4eijwoi5duig2NlZBQUHtsj+CDACg3TU0NOiLL75Qly5d1LNnTz7ctBMwxqi2tlZHjhxRUVGR+vfv77UPvfs+BBkAQLurq6uTMUY9e/ZUSEiIr4cDLwkJCVFgYKA+++wz1dbWKjg4uM33ycW+AACf4UhM59MeR2E89teuewMAAPAiggwAAOeohQsX6uKLL3Y/v+2223TDDTf4bDxngyADAMA5wOFwaP369R7r5syZo5ycHN8MyEu42BcAAB9paGiQw+Fo9+tKGnXr1k3dunXzyb69hSMyAAC00OjRo5WRkaGMjAyFh4erR48emj9/vvuzcGpqajRnzhydd9556tq1q5KTk5Wbm+t+/apVqxQREaF//vOfuvDCC+V0OlVcXKyamhrNnTtX8fHxcjqduuCCC7Ry5Ur36/bt26dx48apW7duio6O1q233qqvvvrKY1y/+c1vdO+99yoyMlIxMTFauHChe3ufPn0kSTfeeKMcDof7+amnlk7lcrmUlZWlhIQEhYSEaNiwYfrv//7vH/zv6E0EGQCAzxljdKK23idLaz+Qb/Xq1QoICNCuXbv0pz/9SY8//rj+/Oc/S5IyMjKUl5entWvX6v3339d//ud/Ki0tTQcOHHC//sSJE3r44Yf15z//Wfv371dUVJSmTJmiNWvW6Mknn9RHH32kZ555xn2kpLy8XFdddZUSExO1Z88ebdy4UaWlpbr55pubjKtr167auXOnHnnkES1atEibNm2SJO3evVuSlJ2drcOHD7ufn0lWVpaef/55rVixQvv379fs2bP1i1/8Qlu3bm3Vv1lb4tQS0Ar5+fm+HkKrJSUl+XoIwBl9W9egC+9/3Sf7/nDRWHUJavmfw/j4eC1ZskQOh0MDBw7UBx98oCVLlmjs2LHKzs5WcXGx4uLiJH13DcrGjRuVnZ2txYsXS/ruM3SefvppDRs2TJL0ySefaN26ddq0aZNSU1MlSX379nXv76mnnlJiYqL79ZL03HPPKT4+Xp988okGDBggSRo6dKgWLFggSerfv7+eeuop5eTk6Kc//al69uwpSYqIiFBMTEyL6qypqdHixYu1efNmpaSkuMf19ttv65lnntGoUaNa/G/WlggyAAC0wsiRIz0+/yYlJUWPPfaYPvjgAzU0NLiDRaOamhp1797d/TwoKEhDhw51P9+7d6/8/f1PGwzee+89vfnmm81ey1JYWOgRZE4WGxursrKy1hf4vw4ePKgTJ07opz/9qcf62tpaJSYmnnW/3kaQAQD4XEigvz5cNNZn+/aGyspK+fv7Kz8/X/7+nn2eHEJCQkI8gtCZPtm4srJS1157rR5++OEm22JjY92PAwMDPbY5HA65XK5W1XDqfiXp1Vdf1Xnnneexzel0nnW/3kaQAQD4nMPhaNXpHV/auXOnx/MdO3aof//+SkxMVENDg8rKynTFFVe0uL8hQ4bI5XJp69at7lNLJ7vkkkv0t7/9TX369FFAwNn/GwUGBqqhoaHF7U++GLmjnEZqDhf7AgDQCsXFxcrMzFRBQYHWrFmjpUuXatasWRowYIAmT56sKVOm6O9//7uKioq0a9cuZWVl6dVXXz1tf3369NHUqVN1xx13aP369SoqKlJubq7WrVsnSUpPT9exY8c0adIk7d69W4WFhXr99dd1++23tyqY9OnTRzk5OSopKdHXX399xvahoaGaM2eOZs+erdWrV6uwsFD//ve/tXTpUq1evbrF+21rBBkAAFphypQp+vbbbzVixAilp6dr1qxZmjFjhqTv7gqaMmWKfvvb32rgwIG64YYbtHv3bvXq1et7+1y+fLl+9rOfaebMmRo0aJCmT5+uqqoqSVJcXJzeeecdNTQ06Oqrr9aQIUN09913KyIiolWfP/PYY49p06ZNio+Pb/E1Lg8++KDmz5+vrKwsDR48WGlpaXr11VeVkJDQ4v22NYdp7X1nHUBFRYXCw8N1/PhxhYWF+Xo4aKETtfXuuxJae5eAV9RWSYu/u5NA9x2Sgrq2ugvuWjo7R44cUVRUlMe6srIy950U+H6teu944ee8PVRXV6uoqEgJCQnt8g3J3jJ69GhdfPHFeuKJJ3w9lA7r++a2Lf5+c0QGAABYiyADAACsZccl4gAAdAAnf90AOgaOyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwBAC40ePVp33323r4eBkxBkAACAtQgyAADAWgQZAABaob6+XhkZGQoPD1ePHj00f/58NX7/ck1NjebOnav4+Hg5nU5dcMEFWrlypSSpoaFB06ZNU0JCgkJCQjRw4ED96U9/8mUpnQJfUQAA8D1jpLoTvtl3YBfJ4Whx89WrV2vatGnatWuX9uzZoxkzZqhXr16aPn26pkyZory8PD355JMaNmyYioqK9NVXX0mSXC6Xzj//fL300kvq3r27tm/frhkzZig2NlY333xzW1XX6RFkAAC+V3dCWhznm33fd0gK6tri5vHx8VqyZIkcDocGDhyoDz74QEuWLNGoUaO0bt06bdq0SampqZKkvn37ul8XGBioBx54wP08ISFBeXl5WrduHUHmB+DUEgAArTBy5Eg5TjqCk5KSogMHDujdd9+Vv7+/Ro0addrXLlu2TElJSerZs6e6deumZ599VsXFxe0x7E6LIzIAAN8L7PLdkRFf7dsLgoODv3f72rVrNWfOHD322GNKSUlRaGioHn30Ue3cudMr+z9XEWQAAL7ncLTq9I4vnRo8duzYof79+2vYsGFyuVzaunWr+9TSyd555x1deumlmjlzpntdYWFhm4+3s+PUEgAArVBcXKzMzEwVFBRozZo1Wrp0qWbNmqU+ffpo6tSpuuOOO7R+/XoVFRUpNzdX69atkyT1799fe/bs0euvv65PPvlE8+fP1+7du31cjf0IMgAAtMKUKVP07bffasSIEUpPT9esWbM0Y8YMSdLy5cv1s5/9TDNnztSgQYM0ffp0VVVVSZJ+9atf6aabbtItt9yi5ORkHT161OPoDM4Op5YAAGih3Nxc9+Ply5c32R4cHKzHH39cjz/+eJNtTqdT2dnZys7O9liflZXl9XGeSzgiAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAIDPNH5rNDqP9p5TggwAoN35+/tLkmpra308EnjbiRPffYt5YGBgu+yPz5EBALS7gIAAdenSRUeOHFFgYKD8/Ph/te2MMTpx4oTKysoUERHhDqttjSADAGh3DodDsbGxKioq0meffebr4cCLIiIiFBMT0277I8gAAHwiKChI/fv35/RSJxIYGNhuR2IaEWQAAD7j5+en4OBgXw8DFuOkJAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWalWQycrK0k9+8hOFhoYqKipKN9xwgwoKCjzaVFdXKz09Xd27d1e3bt00YcIElZaWerQpLi7WNddcoy5duigqKkr33HOP6uvrf3g1AADgnNKqILN161alp6drx44d2rRpk+rq6nT11VerqqrK3Wb27Nl65ZVX9NJLL2nr1q06dOiQbrrpJvf2hoYGXXPNNaqtrdX27du1evVqrVq1Svfff7/3qgIAAOeEgNY03rhxo8fzVatWKSoqSvn5+bryyit1/PhxrVy5Ui+++KKuuuoqSVJ2drYGDx6sHTt2aOTIkXrjjTf04YcfavPmzYqOjtbFF1+sBx98UHPnztXChQsVFBTkveoAAECn9oOukTl+/LgkKTIyUpKUn5+vuro6paamutsMGjRIvXr1Ul5eniQpLy9PQ4YMUXR0tLvN2LFjVVFRof379ze7n5qaGlVUVHgsAAAAZx1kXC6X7r77bl122WW66KKLJEklJSUKCgpSRESER9vo6GiVlJS425wcYhq3N25rTlZWlsLDw91LfHz82Q4bAAB0ImcdZNLT07Vv3z6tXbvWm+Np1rx583T8+HH38vnnn7f5PgEAQMfXqmtkGmVkZGjDhg3atm2bzj//fPf6mJgY1dbWqry83OOoTGlpqWJiYtxtdu3a5dFf411NjW1O5XQ65XQ6z2aoAACgE2vVERljjDIyMvSPf/xDW7ZsUUJCgsf2pKQkBQYGKicnx72uoKBAxcXFSklJkSSlpKTogw8+UFlZmbvNpk2bFBYWpgsvvPCH1AIAAM4xrToik56erhdffFEvv/yyQkND3de0hIeHKyQkROHh4Zo2bZoyMzMVGRmpsLAw/frXv1ZKSopGjhwpSbr66qt14YUX6tZbb9UjjzyikpIS/e53v1N6ejpHXQAAQKu0KsgsX75ckjR69GiP9dnZ2brtttskSUuWLJGfn58mTJigmpoajR07Vk8//bS7rb+/vzZs2KC77rpLKSkp6tq1q6ZOnapFixb9sEoAAMA5p1VBxhhzxjbBwcFatmyZli1bdto2vXv31muvvdaaXQMAADTBdy0BAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYK8PUAAOBU+fn5vh5CqyUlJfl6CMA5iSMyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWanWQ2bZtm6699lrFxcXJ4XBo/fr1Httvu+02ORwOjyUtLc2jzbFjxzR58mSFhYUpIiJC06ZNU2Vl5Q8qBAAAnHtaHWSqqqo0bNgwLVu27LRt0tLSdPjwYfeyZs0aj+2TJ0/W/v37tWnTJm3YsEHbtm3TjBkzWj96AABwTmv1B+KNGzdO48aN+942TqdTMTExzW776KOPtHHjRu3evVvDhw+XJC1dulTjx4/XH//4R8XFxbV2SAAA4BzVJtfI5ObmKioqSgMHDtRdd92lo0ePurfl5eUpIiLCHWIkKTU1VX5+ftq5c2ez/dXU1KiiosJjAQAA8HqQSUtL0/PPP6+cnBw9/PDD2rp1q8aNG6eGhgZJUklJiaKiojxeExAQoMjISJWUlDTbZ1ZWlsLDw91LfHy8t4cNAAAs5PXvWpo4caL78ZAhQzR06FD169dPubm5GjNmzFn1OW/ePGVmZrqfV1RUEGYAAEDb337dt29f9ejRQwcPHpQkxcTEqKyszKNNfX29jh07dtrrapxOp8LCwjwWAACANg8yX3zxhY4eParY2FhJUkpKisrLyz2+3XbLli1yuVxKTk5u6+EAAIBOpNWnliorK91HVySpqKhIe/fuVWRkpCIjI/XAAw9owoQJiomJUWFhoe69915dcMEFGjt2rCRp8ODBSktL0/Tp07VixQrV1dUpIyNDEydO5I4lAADQKq0+IrNnzx4lJiYqMTFRkpSZmanExETdf//98vf31/vvv6/rrrtOAwYM0LRp05SUlKS33npLTqfT3ccLL7ygQYMGacyYMRo/frwuv/xyPfvss96rCgAAnBNafURm9OjRMsacdvvrr79+xj4iIyP14osvtnbXAAAAHviuJQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaAb4eALwjPz/f10M4o+p6l/vxu+++q+CA9s3RfvXfKvGk/bsCQtp1/wAA7+OIDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWCvA1wMA0Lby8/N9PQR9/fXXTda99957+tGPfuSD0QDoTDgiAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsF+HoAANqZaVC3ox8osOao6pzdVdl9iOTw9/WoAOCstPqIzLZt23TttdcqLi5ODodD69ev99hujNH999+v2NhYhYSEKDU1VQcOHPBoc+zYMU2ePFlhYWGKiIjQtGnTVFlZ+YMKAXBmEYe3acjmn2tgXqb6/vsPGpiXqSGbf66Iw9t8PTQAOCutDjJVVVUaNmyYli1b1uz2Rx55RE8++aRWrFihnTt3qmvXrho7dqyqq6vdbSZPnqz9+/dr06ZN2rBhg7Zt26YZM2acfRUAziji8Db13bNQgdVHPNYHVh9R3z0LCTMArNTqU0vjxo3TuHHjmt1mjNETTzyh3/3ud7r++uslSc8//7yio6O1fv16TZw4UR999JE2btyo3bt3a/jw4ZKkpUuXavz48frjH/+ouLi4H1AOOhO/+m+93F91s4/PCaZB8fuekiQ5TtnkkGQkxe97ShU9LmmT00x+DdXqEth0nbfn2Kdqq5quC+ra/uMAzjFevUamqKhIJSUlSk1Nda8LDw9XcnKy8vLyNHHiROXl5SkiIsIdYiQpNTVVfn5+2rlzp2688cYm/dbU1Kimpsb9vKKiwpvDRgeV+K9r2qzvYZsmtFnfNnJICqr+Sokbr2uzfVTdF+a5Im9ym+3LJ/7VzLqFx9t9GMC5xqt3LZWUlEiSoqOjPdZHR0e7t5WUlCgqKspje0BAgCIjI91tTpWVlaXw8HD3Eh8f781hAwAAS1lx19K8efOUmZnpfl5RUUGYOQe8O+5Vr/bnV1/tPhLz3k//JldAsFf778i6HX1f/XfNO2O7AyOyVNl9qNf3/3V5ua699lqPda+88op+FBHh9X35SmJioq+H0Gr5+fm+HkKrJSUl+XoI6GC8GmRiYmIkSaWlpYqNjXWvLy0t1cUXX+xuU1ZW5vG6+vp6HTt2zP36UzmdTjmdTm8OFRZwBYS0Yd/Bbdp/R1MRNVy1wT0VWH2kyTUy0nfXyNQF91RF1PA2uUbG5V+tE3Wnrutkc8D1MIBPePXUUkJCgmJiYpSTk+NeV1FRoZ07dyolJUWSlJKSovLyco//CWzZskUul0vJycneHA6ARg5/fX5RuqTvQsvJGp9/flE6nycDwDqtPiJTWVmpgwcPup8XFRVp7969ioyMVK9evXT33Xfr97//vfr376+EhATNnz9fcXFxuuGGGyRJgwcPVlpamqZPn64VK1aorq5OGRkZmjhxIncsAW2oPPZKfTp8oeL3LVPQSbdg1wX31OcXpas89kofjg4Azk6rg8yePXv0H//xH+7njdeuTJ06VatWrdK9996rqqoqzZgxQ+Xl5br88su1ceNGBQf/3/UIL7zwgjIyMjRmzBj5+flpwoQJevLJJ71QDoDvUx57pcpjLuOTfQF0Gq0OMqNHj5Yxpx6c/j8Oh0OLFi3SokWLTtsmMjJSL774Ymt3DcAbHP6q7HGxr0cBAF7Bl0YCAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsFaArwcAAJ1Bfn5+m/VdXe9yP3733XcVHHD6/4P61X+rxJPaugJC2mxcQEfAERkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtrweZhQsXyuFweCyDBg1yb6+urlZ6erq6d++ubt26acKECSotLfX2MAAAwDmgTY7I/PjHP9bhw4fdy9tvv+3eNnv2bL3yyit66aWXtHXrVh06dEg33XRTWwwDAAB0cgFt0mlAgGJiYpqsP378uFauXKkXX3xRV111lSQpOztbgwcP1o4dOzRy5Mi2GA4AAOik2uSIzIEDBxQXF6e+fftq8uTJKi4uliTl5+errq5Oqamp7raDBg1Sr169lJeXd9r+ampqVFFR4bEAAAB4PcgkJydr1apV2rhxo5YvX66ioiJdccUV+uabb1RSUqKgoCBFRER4vCY6OlolJSWn7TMrK0vh4eHuJT4+3tvDBgAAFvL6qaVx48a5Hw8dOlTJycnq3bu31q1bp5CQkLPqc968ecrMzHQ/r6ioIMwAAIC2v/06IiJCAwYM0MGDBxUTE6Pa2lqVl5d7tCktLW32mppGTqdTYWFhHgsAAECbB5nKykoVFhYqNjZWSUlJCgwMVE5Ojnt7QUGBiouLlZKS0tZDAQAAnYzXTy3NmTNH1157rXr37q1Dhw5pwYIF8vf316RJkxQeHq5p06YpMzNTkZGRCgsL069//WulpKRwxxIAAGg1rweZL774QpMmTdLRo0fVs2dPXX755dqxY4d69uwpSVqyZIn8/Pw0YcIE1dTUaOzYsXr66ae9PQwAAHAO8HqQWbt27fduDw4O1rJly7Rs2TJv7xoAAJxj+K4lAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwAArBXg6wF0RPn5+b4eAgAAaAGOyAAAAGsRZAAAgLUIMgAAwFoEGQAAYC2CDAAAsBZBBgAAWIsgAwAArEWQAQAA1iLIAAAAaxFkAACAtQgyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYK8PUAAABoqfz8fF8PodWSkpJ8PYROjSMyAADAWgQZAABgLYIMAACwFkEGAABYiyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGsRZAAAgLUIMgAAwFo+DTLLli1Tnz59FBwcrOTkZO3atcuXwwEAAJYJ8NWO//rXvyozM1MrVqxQcnKynnjiCY0dO1YFBQWKiory1bAAAPCq/Px8Xw/hrCQlJfl6CC3isyMyjz/+uKZPn67bb79dF154oVasWKEuXbroueee89WQAACAZXxyRKa2tlb5+fmaN2+ee52fn59SU1OVl5fXpH1NTY1qamrcz48fPy5JqqioaJPxVVZWtkm/57qaBpdcNSckSVVVlar3b98c7ddQrYoaI0mqrKqSy7+hXfd/Lquqqmp2XWBgoA9GY5/WvHf4OYe3tMXf2MY+jTHe69T4wJdffmkkme3bt3usv+eee8yIESOatF+wYIGRxMLCwsLCwtIJls8//9xrmcJn18i0xrx585SZmel+7nK5dOzYMXXv3l0Oh8Nr+6moqFB8fLw+//xzhYWFea3fjoY6Oxfq7Fyos/M5V2ptSZ3GGH3zzTeKi4vz2n59EmR69Oghf39/lZaWeqwvLS1VTExMk/ZOp1NOp9NjXURERJuNLywsrFP/sDWizs6FOjsX6ux8zpVaz1RneHi4V/fnk4t9g4KClJSUpJycHPc6l8ulnJwcpaSk+GJIAADAQj47tZSZmampU6dq+PDhGjFihJ544glVVVXp9ttv99WQAACAZXwWZG655RYdOXJE999/v0pKSnTxxRdr48aNio6O9tWQ5HQ6tWDBgiansTob6uxcqLNzoc7O51yp1Vd1Oozx5j1QAAAA7YfvWgIAANYiyAAAAGsRZAAAgLUIMgAAwFqdLsgsW7ZMffr0UXBwsJKTk7Vr167vbV9eXq709HTFxsbK6XRqwIABeu2111rVZ3V1tdLT09W9e3d169ZNEyZMaPJhf97m7TqzsrL0k5/8RKGhoYqKitINN9yggoICjz5Gjx4th8Phsdx5551tUl8jb9e5cOHCJjUMGjTIo4/OMJ99+vRpUqfD4VB6erq7TUefz+bG53A4dM0117jbGGN0//33KzY2ViEhIUpNTdWBAwc8+jl27JgmT56ssLAwRUREaNq0aW3+fWrerLOurk5z587VkCFD1LVrV8XFxWnKlCk6dOiQRz/NzflDDz1kTZ2SdNtttzXZnpaW5tGP7fMpqdntDodDjz76qLtNR59PSXriiSc0cOBAhYSEKD4+XrNnz1Z1dXWr+vTK71uvfdlBB7B27VoTFBRknnvuObN//34zffp0ExERYUpLS5ttX1NTY4YPH27Gjx9v3n77bVNUVGRyc3PN3r17W9XnnXfeaeLj401OTo7Zs2ePGTlypLn00kutqnPs2LEmOzvb7Nu3z+zdu9eMHz/e9OrVy1RWVrrbjBo1ykyfPt0cPnzYvRw/ftyqOhcsWGB+/OMfe9Rw5MgRj346w3yWlZV51Lhp0yYjybz55pvuNh19Po8ePeoxtn379hl/f3+TnZ3tbvPQQw+Z8PBws379evPee++Z6667ziQkJJhvv/3W3SYtLc0MGzbM7Nixw7z11lvmggsuMJMmTbKmzvLycpOammr++te/mo8//tjk5eWZESNGmKSkJI9+evfubRYtWuTR18nv345epzHGTJ061aSlpXm0O3bsmEc/ts+nMcZj++HDh81zzz1nHA6HKSwsdLfp6PP5wgsvGKfTaV544QVTVFRkXn/9dRMbG2tmz57dqj698fu2UwWZESNGmPT0dPfzhoYGExcXZ7Kyspptv3z5ctO3b19TW1t71n2Wl5ebwMBA89JLL7nbfPTRR0aSycvL+6ElndWYTtWSOk9VVlZmJJmtW7e6140aNcrMmjXrrMfdWm1R54IFC8ywYcNOu72zzuesWbNMv379jMvlcq/r6PN5qiVLlpjQ0FD3L3OXy2ViYmLMo48+6m5TXl5unE6nWbNmjTHGmA8//NBIMrt373a3+de//mUcDof58ssvvVFWE96uszm7du0yksxnn33mXte7d2+zZMmSsx53a7VFnVOnTjXXX3/9aV/TWefz+uuvN1dddZXHuo4+n+np6U3GnJmZaS677LIW9+mt37ed5tRSbW2t8vPzlZqa6l7n5+en1NRU5eXlNfuaf/7zn0pJSVF6erqio6N10UUXafHixWpoaGhxn/n5+aqrq/NoM2jQIPXq1eu0++1odTbn+PHjkqTIyEiP9S+88IJ69Oihiy66SPPmzdOJEye8UFVTbVnngQMHFBcXp759+2ry5MkqLi52b+uM81lbW6u//OUvuuOOO5p8yWpHns9TrVy5UhMnTlTXrl0lSUVFRSopKfHoMzw8XMnJye4+8/LyFBERoeHDh7vbpKamys/PTzt37vRGaR7aos7mHD9+XA6Ho8l3zj300EPq3r27EhMT9eijj6q+vv6s6jiTtqwzNzdXUVFRGjhwoO666y4dPXrUva0zzmdpaaleffVVTZs2rcm2jjyfl156qfLz892nij799FO99tprGj9+fIv79NbvWyu+/bolvvrqKzU0NDT5ZODo6Gh9/PHHzb7m008/1ZYtWzR58mS99tprOnjwoGbOnKm6ujotWLCgRX2WlJQoKCioyS+U6OholZSUeK/A/9UWdZ7K5XLp7rvv1mWXXaaLLrrIvf7nP/+5evfurbi4OL3//vuaO3euCgoK9Pe//927Rart6kxOTtaqVas0cOBAHT58WA888ICuuOIK7du3T6GhoZ1yPtevX6/y8nLddtttHus7+nyebNeuXdq3b59WrlzpXtc4H8312bitpKREUVFRHtsDAgIUGRnZYebzZM3Vearq6mrNnTtXkyZN8vhivt/85je65JJLFBkZqe3bt2vevHk6fPiwHn/88bMv6DTaqs60tDTddNNNSkhIUGFhoe677z6NGzdOeXl58vf375TzuXr1aoWGhuqmm27yWN/R5/PnP/+5vvrqK11++eUyxqi+vl533nmn7rvvvhb36a3ft50myJwNl8ulqKgoPfvss/L391dSUpK+/PJLPfroo83+QbBVa+tMT0/Xvn379Pbbb3usnzFjhvvxkCFDFBsbqzFjxqiwsFD9+vVr8zrOpCV1jhs3zt1+6NChSk5OVu/evbVu3bpm/0fUEbV2PleuXKlx48YpLi7OY31Hn8+TrVy5UkOGDNGIESN8PZQ2daY66+rqdPPNN8sYo+XLl3tsy8zMdD8eOnSogoKC9Ktf/UpZWVkd7qPxT1fnxIkT3Y+HDBmioUOHql+/fsrNzdWYMWPae5g/WEt+bp977jlNnjxZwcHBHus7+nzm5uZq8eLFevrpp5WcnKyDBw9q1qxZevDBBzV//vx2HUunObXUo0cP+fv7N7naubS0VDExMc2+JjY2VgMGDJC/v7973eDBg1VSUqLa2toW9RkTE6Pa2lqVl5e3eL8/RFvUebKMjAxt2LBBb775ps4///zvHUtycrIk6eDBg2dTyvdq6zobRUREaMCAAe4aOtt8fvbZZ9q8ebN++ctfnnEsHW0+G1VVVWnt2rVNgmbj6870/iwrK/PYXl9fr2PHjnWY+Wx0ujobNYaYzz77TJs2bfI4GtOc5ORk1dfX63/+539aVUNLtGWdJ+vbt6969Ojh8f7sLPMpSW+99ZYKCgpa/P7sSPM5f/583XrrrfrlL3+pIUOG6MYbb9TixYuVlZUll8vVrn8/O02QCQoKUlJSknJyctzrXC6XcnJylJKS0uxrLrvsMh08eFAul8u97pNPPlFsbKyCgoJa1GdSUpICAwM92hQUFKi4uPi0+/0h2qJO6bvbWDMyMvSPf/xDW7ZsUUJCwhnHsnfvXknf/WH1traq81SVlZUqLCx019BZ5rNRdna2oqKiPG79PJ2ONp+NXnrpJdXU1OgXv/iFx/qEhATFxMR49FlRUaGdO3e6+0xJSVF5ebny8/PdbbZs2SKXy+UObt7UFnVK/xdiDhw4oM2bN6t79+5nHMvevXvl5+fX5FSMN7RVnaf64osvdPToUffPZGeZz0YrV65UUlKShg0bdsaxdLT5PHHihPz8PCNE43+ujDHt+/ezxZcFW2Dt2rXG6XSaVatWmQ8//NDMmDHDREREmJKSEmOMMbfeeqv5r//6L3f74uJiExoaajIyMkxBQYHZsGGDiYqKMr///e9b3Kcx390+1qtXL7NlyxazZ88ek5KSYlJSUqyq86677jLh4eEmNzfX43a/EydOGGOMOXjwoFm0aJHZs2ePKSoqMi+//LLp27evufLKK62q87e//a3Jzc01RUVF5p133jGpqammR48epqyszN2mM8ynMd/dIdCrVy8zd+7cJvu0YT4bXX755eaWW25pts+HHnrIREREmJdfftm8//775vrrr2/29uvExESzc+dO8/bbb5v+/fu3+e263qyztrbWXHfddeb88883e/fu9Xh/1tTUGGOM2b59u1myZInZu3evKSwsNH/5y19Mz549zZQpU6yp85tvvjFz5swxeXl5pqioyGzevNlccsklpn///qa6utrdzvb5bHT8+HHTpUsXs3z58ibbbJjPBQsWmNDQULNmzRrz6aefmjfeeMP069fP3HzzzS3u0xjv/L7tVEHGGGOWLl1qevXqZYKCgsyIESPMjh073NtGjRplpk6d6tF++/btJjk52TidTtO3b1/zhz/8wdTX17e4T2OM+fbbb83MmTPNj370I9OlSxdz4403msOHD7dZjWca09nUKanZpfGzD4qLi82VV15pIiMjjdPpNBdccIG555572vRzR9qizltuucXExsaaoKAgc95555lbbrnFHDx40KOPzjCfxhjz+uuvG0mmoKCgyf5smc+PP/7YSDJvvPFGs/25XC4zf/58Ex0dbZxOpxkzZkyTeo8ePWomTZpkunXrZsLCwsztt99uvvnmG6/XdjJv1llUVHTa92fj5wLl5+eb5ORkEx4eboKDg83gwYPN4sWLPQJAW/BmnSdOnDBXX3216dmzpwkMDDS9e/c206dP9/ijZ4z989nomWeeMSEhIaa8vLzJNhvms66uzixcuND069fPBAcHm/j4eDNz5kzz9ddft7hPY7zz+9ZhjDEtP34DAADQcXSaa2QAAMC5hyADAACsRZABAADWIsgAAABrEWQAAIC1CDIAAMBaBBkAAGAtggwAALAWQQYAAFiLIAMAAKxFkAEAANYiyAAAAGv9f7aA/VTrO/LRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "rng = np.random.default_rng(1)\n", "\n", "# generate data\n", "data = rng.exponential(size=1000)\n", "\n", "# generate confidence intervals\n", "cis = {\n", " m: ci(np.median, data, cl=0.68, size=100, ci_method=m, random_state=rng)\n", " for m in (\"percentile\", \"bca\")\n", "}\n", "\n", "# compute mean and std. deviation of replicates\n", "rep = bootstrap(np.median, data, size=1000, random_state=rng)\n", "mr = np.mean(rep)\n", "sr = np.std(rep)\n", "\n", "# draw everything\n", "for i, (m, v) in enumerate(cis.items()):\n", " for j in (0, 1):\n", " plt.axvline(v[j], color=f\"C{i}\", label=m if j == 0 else None)\n", "\n", "plt.hist(rep, facecolor=\"0.8\")\n", "plt.axvline(np.log(2), lw=3, color=\"k\")\n", "plt.errorbar(mr, 100, 0, sr, fmt=\"o\") \n", "plt.legend();" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The mean of the replicates and its standard deviation is shown with the dot and the horizontal error bar. The three interval methods are shown as thin vertical lines. The thick black line is the true value of the median for an exponential distribution." ] } ], "metadata": { "kernel_info": { "name": "python3" }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.9" }, "nteract": { "version": "0.23.3" } }, "nbformat": 4, "nbformat_minor": 4 }