Efficiency
Setup
# Generate dummy data - sample is subset of total
x_total = np.random.normal(0.4, 0.1, 10000)
x_sample = x_total[:7500] # 75% subset
# Create and fill histograms
h_sample = Hist(
hist.axis.Regular(50, 0, 1), storage=hist.storage.Weight()
) # Long interface
h_total = hist.new.Regular(50, 0, 1).Weight() # Shorthand interface
h_sample.fill(x_sample)
h_total.fill(x_total)
Code
Full code
import hist
import numpy as np
from hist import Hist
import mplhep as mh
np.random.seed(42)
# Generate dummy data - sample is subset of total
x_total = np.random.normal(0.4, 0.1, 10000)
x_sample = x_total[:7500] # 75% subset
# Create and fill histograms
h_sample = Hist(
hist.axis.Regular(50, 0, 1), storage=hist.storage.Weight()
) # Long interface
h_total = hist.new.Regular(50, 0, 1).Weight() # Shorthand interface
h_sample.fill(x_sample)
h_total.fill(x_total)
###
fig, ax_main, ax_comparison = mh.comp.hists(
h_sample,
h_total,
xlabel="Variable",
ylabel="Entries",
h1_label=r"$h_{Sample}$",
h2_label=r"$h_{Total}$",
comparison="efficiency", # <--
)