Use and Citations

Warning: This is a development version and should not be cited. To find the specific version to cite, please go to ReadTheDocs.

Citation

The preferred BibTeX entry for citation of pyhf includes both the Zenodo archive and the JOSS paper:

@software{pyhf,
  author = {Lukas Heinrich and Matthew Feickert and Giordon Stark},
  title = "{pyhf: v0.6.3}",
  version = {0.6.3},
  doi = {10.5281/zenodo.1169739},
  url = {https://doi.org/10.5281/zenodo.1169739},
  note = {https://github.com/scikit-hep/pyhf/releases/tag/v0.6.3}
}

@article{pyhf_joss,
  doi = {10.21105/joss.02823},
  url = {https://doi.org/10.21105/joss.02823},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {58},
  pages = {2823},
  author = {Lukas Heinrich and Matthew Feickert and Giordon Stark and Kyle Cranmer},
  title = {pyhf: pure-Python implementation of HistFactory statistical models},
  journal = {Journal of Open Source Software}
}

Use in Publications

The following is an updating list of citations and use cases of pyhf. There is an incomplete but automatically updated list of citations on INSPIRE as well.

Use Citations

  1. ATLAS Collaboration. Search for heavy, long-lived, charged particles with large ionisation energy loss in $pp$ collisions at $\sqrt s = 13 \text TeV$ using the ATLAS experiment and the full Run 2 dataset. 5 2022. arXiv:2205.06013.

  2. Alexander Albert and others. Strange quark as a probe for new physics in the Higgs sector. In 2022 Snowmass Summer Study. 3 2022. arXiv:2203.07535.

  3. Nathan Simpson and Lukas Heinrich. neos: End-to-End-Optimised Summary Statistics for High Energy Physics. 3 2022. arXiv:2203.05570.

  4. ATLAS Collaboration. Search for neutral long-lived particles in $pp$ collisions at $\sqrt s=13$ TeV that decay into displaced hadronic jets in the ATLAS calorimeter. 3 2022. arXiv:2203.01009.

  5. ATLAS Collaboration. Search for events with a pair of displaced vertices from long-lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in pp collisions at $\sqrt s=13$ TeV. 3 2022. arXiv:2203.00587.

  6. Florentin Jaffredo. Revisiting mono-τ tails at the LHC. 12 2021. arXiv:2112.14604.

  7. ATLAS Collaboration. Implementation of simplified likelihoods in HistFactory for searches for supersymmetry. Geneva, Sep 2021. URL: https://cds.cern.ch/record/2782654.

  8. Michael J. Baker, Darius A. Faroughy, and Sokratis Trifinopoulos. Collider signatures of coannihilating dark matter in light of the B-physics anomalies. JHEP, 11:084, 2021. arXiv:2109.08689, doi:10.1007/JHEP11(2021)084.

  9. Kyle Cranmer and others. Publishing statistical models: Getting the most out of particle physics experiments. 9 2021. arXiv:2109.04981.

  10. Kyle Cranmer and Alexander Held. Building and steering binned template fits with cabinetry. EPJ Web Conf., 251:03067, 2021. doi:10.1051/epjconf/202125103067.

  11. ATLAS Collaboration. Search for chargino–neutralino pair production in final states with three leptons and missing transverse momentum in \(\sqrt s = 13\,\text TeV\) \(pp\) collisions with the ATLAS detector. Eur. Phys. J. C, 81:1118, 2021. arXiv:2106.01676, doi:10.1140/epjc/s10052-021-09749-7.

  12. Belle II Collaboration. Search for $B^+ \to K^+ \nu \bar \nu $ decays with an inclusive tagging method at the Belle II experiment. In 55th Rencontres de Moriond on Electroweak Interactions and Unified Theories. 5 2021. arXiv:2105.05754.

  13. Belle II Collaboration. Search for B+\textrightarrow K+\ensuremath \nu \ensuremath \nu \textasciimacron Decays Using an Inclusive Tagging Method at Belle II. Phys. Rev. Lett., 127(18):181802, 2021. arXiv:2104.12624, doi:10.1103/PhysRevLett.127.181802.

  14. Andrei Angelescu, Damir Bečirević, Darius A. Faroughy, Florentin Jaffredo, and Olcyr Sumensari. Single leptoquark solutions to the B-physics anomalies. Phys. Rev. D, 104(5):055017, 2021. arXiv:2103.12504, doi:10.1103/PhysRevD.104.055017.

  15. Matthew Feickert, Lukas Heinrich, Giordon Stark, and Ben Galewsky. Distributed statistical inference with pyhf enabled through funcX. EPJ Web Conf., 251:02070, 2021. arXiv:2103.02182, doi:10.1051/epjconf/202125102070.

  16. Rodolfo Capdevilla, Federico Meloni, Rosa Simoniello, and Jose Zurita. Hunting wino and higgsino dark matter at the muon collider with disappearing tracks. JHEP, 06:133, 2021. arXiv:2102.11292, doi:10.1007/JHEP06(2021)133.

  17. Vincenzo Cirigliano, Kaori Fuyuto, Christopher Lee, Emanuele Mereghetti, and Bin Yan. Charged Lepton Flavor Violation at the EIC. JHEP, 03:256, 2021. arXiv:2102.06176, doi:10.1007/JHEP03(2021)256.

  18. Benjamin Fuks and others. Proceedings of the second MadAnalysis 5 workshop on LHC recasting in Korea. Mod. Phys. Lett. A, 36(01):2102001, 2021. arXiv:2101.02245, doi:10.1142/S0217732321020016.

  19. Wolfgang Waltenberger, André Lessa, and Sabine Kraml. Artificial Proto-Modelling: Building Precursors of a Next Standard Model from Simplified Model Results. JHEP, 03:207, 2021. arXiv:2012.12246, doi:10.1007/JHEP03(2021)207.

  20. Simone Amoroso, Deepak Kar, and Matthias Schott. How to discover QCD Instantons at the LHC. Eur. Phys. J. C, 81(7):624, 2021. arXiv:2012.09120, doi:10.1140/epjc/s10052-021-09412-1.

  21. Gaël Alguero, Jan Heisig, Charanjit K. Khosa, Sabine Kraml, Suchita Kulkarni, Andre Lessa, Philipp Neuhuber, Humberto Reyes-González, Wolfgang Waltenberger, and Alicia Wongel. New developments in SModelS. PoS, TOOLS2020:022, 2021. arXiv:2012.08192, doi:10.22323/1.392.0022.

  22. Matthew Feickert, Lukas Heinrich, and Giordon Stark. Likelihood preservation and statistical reproduction of searches for new physics. EPJ Web Conf., 245:06017, 2020. doi:10.1051/epjconf/202024506017.

  23. Gaël Alguero, Sabine Kraml, and Wolfgang Waltenberger. A SModelS interface for pyhf likelihoods. Comput. Phys. Commun., 264:107909, 2021. arXiv:2009.01809, doi:10.1016/j.cpc.2021.107909.

  24. ATLAS Collaboration. Search for new phenomena in events with two opposite-charge leptons, jets and missing transverse momentum in \(pp\) collisions at \(\sqrt s = 13\,\text TeV\) with the ATLAS detector. JHEP, 04:165, 2021. arXiv:2102.01444, doi:10.1007/JHEP04(2021)165.

  25. Charanjit K. Khosa, Sabine Kraml, Andre Lessa, Philipp Neuhuber, and Wolfgang Waltenberger. SModelS Database Update v1.2.3. LHEP, 2020:158, 2020. arXiv:2005.00555, doi:10.31526/lhep.2020.158.

  26. G. Brooijmans and others. Les Houches 2019 Physics at TeV Colliders: New Physics Working Group Report. In 11th Les Houches Workshop on Physics at TeV Colliders: PhysTeV Les Houches. 2 2020. arXiv:2002.12220.

  27. Andrei Angelescu, Darius A. Faroughy, and Olcyr Sumensari. Lepton Flavor Violation and Dilepton Tails at the LHC. Eur. Phys. J. C, 80(7):641, 2020. arXiv:2002.05684, doi:10.1140/epjc/s10052-020-8210-5.

  28. B. C. Allanach, Tyler Corbett, and Maeve Madigan. Sensitivity of Future Hadron Colliders to Leptoquark Pair Production in the Di-Muon Di-Jets Channel. Eur. Phys. J. C, 80(2):170, 2020. arXiv:1911.04455, doi:10.1140/epjc/s10052-020-7722-3.

  29. ATLAS Collaboration. Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods. Geneva, Aug 2019. URL: https://cds.cern.ch/record/2684863.

  30. Lukas Heinrich, Holger Schulz, Jessica Turner, and Ye-Ling Zhou. Constraining A$_4$ leptonic flavour model parameters at colliders and beyond. JHEP, 04:144, 2019. arXiv:1810.05648, doi:10.1007/JHEP04(2019)144.

General Citations

  1. ATLAS Collaboration. SimpleAnalysis: Truth-level Analysis Framework. Geneva, Apr 2022. URL: https://cds.cern.ch/record/2805991.

  2. Tommaso Dorigo and others. Toward the End-to-End Optimization of Particle Physics Instruments with Differentiable Programming: a White Paper. 3 2022. arXiv:2203.13818.

  3. Harry Enke and others. Survey of Open Data Concepts Within Fundamental Physics: An Initiative of the PUNCH4NFDI Consortium. Computing and Software for Big Science, 6(1):6, Mar 2022. URL: https://doi.org/10.1007/s41781-022-00081-7, doi:10.1007/s41781-022-00081-7.

  4. Lukas Heinrich and Michael Kagan. Differentiable Matrix Elements with MadJax. 2 2022. arXiv:2203.00057.

  5. Jim Pivarski, Eduardo Rodrigues, Kevin Pedro, Oksana Shadura, Benjamin Krikler, and Graeme A. Stewart. HL-LHC Computing Review Stage 2, Common Software Projects: Data Science Tools for Analysis. 2 2022. arXiv:2202.02194.

  6. Jean-Loup Tastet, Oleg Ruchayskiy, and Inar Timiryasov. Reinterpreting the ATLAS bounds on heavy neutral leptons in a realistic neutrino oscillation model. 7 2021. arXiv:2107.12980.

  7. Jeffrey Krupa and others. GPU coprocessors as a service for deep learning inference in high energy physics. Mach. Learn. Sci. Tech., 2(3):035005, 2021. arXiv:2007.10359, doi:10.1088/2632-2153/abec21.

  8. Waleed Abdallah and others. Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2. SciPost Phys., 9(2):022, 2020. arXiv:2003.07868, doi:10.21468/SciPostPhys.9.2.022.

  9. J. Alison and others. Higgs boson potential at colliders: Status and perspectives. Rev. Phys., 5:100045, 2020. arXiv:1910.00012, doi:10.1016/j.revip.2020.100045.

  10. Johann Brehmer, Felix Kling, Irina Espejo, and Kyle Cranmer. MadMiner: Machine learning-based inference for particle physics. Comput. Softw. Big Sci., 4(1):3, 2020. arXiv:1907.10621, doi:10.1007/s41781-020-0035-2.

Published Statistical Models

Updating list of HEPData entries for publications using HistFactory JSON statistical models:

  1. Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in $pp$ collisions at $\sqrt s=13$ TeV with the ATLAS detector. 2021. URL: https://doi.org/10.17182/hepdata.104458, doi:10.17182/hepdata.104458.

  2. Measurement of the $t\bar tt\bar t$ production cross section in $pp$ collisions at $\sqrt s$=13 TeV with the ATLAS detector. 2021. URL: https://doi.org/10.17182/hepdata.105039, doi:10.17182/hepdata.105039.

  3. Search for R-parity violating supersymmetry in a final state containing leptons and many jets with the ATLAS experiment using $\sqrt s = 13$ TeV proton-proton collision data. 2021. URL: https://doi.org/10.17182/hepdata.104860, doi:10.17182/hepdata.104860.

  4. Search for chargino–neutralino pair production in final states with three leptons and missing transverse momentum in $\sqrt s = 13$ TeV $pp$ collisions with the ATLAS detector. 2021. URL: https://doi.org/10.17182/hepdata.95751, doi:10.17182/hepdata.95751.

  5. Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson at $\sqrt s = 13$ TeV with the ATLAS detector. 2021. URL: https://doi.org/10.17182/hepdata.100351, doi:10.17182/hepdata.100351.

  6. Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ-lepton in $pp$ collisions at $ \sqrt s $ = 13 TeV with the ATLAS detector. 2021. URL: https://doi.org/10.17182/hepdata.100174, doi:10.17182/hepdata.100174.

  7. Search for squarks and gluinos in final states with one isolated lepton, jets, and missing transverse momentum at $\sqrt s=13$ with the ATLAS detector. 2021. URL: https://doi.org/10.17182/hepdata.97041, doi:10.17182/hepdata.97041.

  8. Search for trilepton resonances from chargino and neutralino pair production in $\sqrt s$ = 13 TeV $pp$ collisions with the ATLAS detector. 2020. URL: https://doi.org/10.17182/hepdata.99806, doi:10.17182/hepdata.99806.

  9. Search for displaced leptons in $\sqrt s = 13$ TeV $pp$ collisions with the ATLAS detector. 2020. URL: https://doi.org/10.17182/hepdata.98796, doi:10.17182/hepdata.98796.

  10. Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb$^-1$ of $\sqrt s$ =13 TeV $pp$ collision data with the ATLAS detector. 2021. URL: https://doi.org/10.17182/hepdata.95664, doi:10.17182/hepdata.95664.

  11. Measurement of the $t\bar t$ production cross-section in the lepton+jets channel at $\sqrt s=13$ TeV with the ATLAS experiment. 2020. URL: https://doi.org/10.17182/hepdata.95748, doi:10.17182/hepdata.95748.

  12. Search for long-lived, massive particles in events with a displaced vertex and a muon with large impact parameter in $pp$ collisions at $\sqrt s = 13$ TeV with the ATLAS detector. 2020. URL: https://doi.org/10.17182/hepdata.91760, doi:10.17182/hepdata.91760.

  13. Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in $\sqrt s$ = 13 TeV $pp$ collisions with the ATLAS detector. 2019. URL: https://doi.org/10.17182/hepdata.91127, doi:10.17182/hepdata.91127.

  14. Searches for electroweak production of supersymmetric particles with compressed mass spectra in $\sqrt s=$ 13 TeV $pp$ collisions with the ATLAS detector. 2020. URL: https://doi.org/10.17182/hepdata.91374, doi:10.17182/hepdata.91374.

  15. Search for direct stau production in events with two hadronic τ-leptons in $\sqrt s = 13$ TeV $pp$ collisions with the ATLAS detector. 2019. URL: https://doi.org/10.17182/hepdata.92006, doi:10.17182/hepdata.92006.

  16. Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two $b$-jets in (pp) collisions at $\sqrt s=13$ TeV with the ATLAS detector. 2020. URL: https://doi.org/10.17182/hepdata.90607.v2, doi:10.17182/hepdata.90607.v2.

  17. Search for squarks and gluinos in final states with same-sign leptons and jets using 139 fb$^-1$ of data collected with the ATLAS detector. 2020. URL: https://doi.org/10.17182/hepdata.91214.v3, doi:10.17182/hepdata.91214.v3.

  18. Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, $b$-jets and missing transverse momentum. 2019. URL: https://doi.org/10.17182/hepdata.89408, doi:10.17182/hepdata.89408.

Note

ATLAS maintains a public listing of all published statistical models on the ATLAS public results page which can be found by filtering all public results by the “Likelihood available” analysis characteristics keyword.