Use and Citations

Warning: This is a development version and should not be cited. To find the specific version to cite, please go to ReadTheDocs.


The preferred BibTeX entry for citation of pyhf includes both the Zenodo archive and the JOSS paper:

  author = {Lukas Heinrich and Matthew Feickert and Giordon Stark},
  title = "{pyhf: v0.7.6}",
  version = {0.7.6},
  doi = {10.5281/zenodo.1169739},
  url = {},
  note = {}

  doi = {10.21105/joss.02823},
  url = {},
  year = {2021},
  publisher = {The Open Journal},
  volume = {6},
  number = {58},
  pages = {2823},
  author = {Lukas Heinrich and Matthew Feickert and Giordon Stark and Kyle Cranmer},
  title = {pyhf: pure-Python implementation of HistFactory statistical models},
  journal = {Journal of Open Source Software}

Use in Publications

The following is an updating list of citations and use cases of pyhf. There is an incomplete but automatically updated list of citations on INSPIRE as well.

Use Citations

  1. Alexander Held, Elliott Kauffman, Oksana Shadura, and Andrew Wightman. Physics analysis for the HL-LHC: concepts and pipelines in practice with the Analysis Grand Challenge. 1 2024. arXiv:2401.02766.

  2. Priyotosh Bandyopadhyay, Snehashis Parashar, Chandrima Sen, and Jeonghyeon Song. Probing Inert Triplet Model at a multi-TeV muon collider via vector boson fusion with forward muon tagging. 1 2024. arXiv:2401.02697.

  3. Elliott Kauffman, Alexander Held, and Oksana Shadura. Machine Learning for Columnar High Energy Physics Analysis. 1 2024. arXiv:2401.01802.

  4. Mohammad Mahdi Altakach, Sabine Kraml, Andre Lessa, Sahana Narasimha, Timothée Pascal, Théo Reymermier, and Wolfgang Waltenberger. Global LHC constraints on electroweak-inos with SModelS v2.3. 12 2023. arXiv:2312.16635.

  5. MicroBooNE Collaboration. First search for dark-trident processes using the MicroBooNE detector. 12 2023. arXiv:2312.13945.

  6. Leandro Da Rold, Manuel Epele, Anibal D. Medina, Nicolás I. Mileo, and Alejandro Szynkman. Double Higgs production at the HL-LHC: probing a loop-enhanced model with kinematical distributions. 12 2023. arXiv:2312.13149.

  7. Mariana Frank, Benjamin Fuks, Adil Jueid, Stefano Moretti, and Ozer Ozdal. A novel search strategy for right-handed charged gauge bosons at the Large Hadron Collider. 12 2023. arXiv:2312.08521.

  8. ATLAS Collaboration. Search for short- and long-lived axion-like particles in $H\rightarrow a a \rightarrow 4\gamma $ decays with the ATLAS experiment at the LHC. 12 2023. arXiv:2312.03306.

  9. Wolfgang Altmannshofer, Andreas Crivellin, Huw Haigh, Gianluca Inguglia, and Jorge Martin Camalich. Light New Physics in $B\to K^(*)\nu \bar \nu $? 11 2023. arXiv:2311.14629.

  10. Belle II Collaboration. Evidence for $B^+\to K^+\nu \bar \nu $ Decays. 11 2023. arXiv:2311.14647.

  11. Ryan Holder, John Reddick, Matteo Cremonesi, Doug Berry, Kun Cheng, Matthew Low, Tim M. P. Tait, and Daniel Whiteson. Hadronic Mono-$W'$ Probes of Dark Matter at Colliders. 11 2023. arXiv:2311.13578.

  12. Shelley Tong, James Corcoran, Max Fieg, Michael Fenton, and Daniel Whiteson. New Physics in Single Resonant Top Quarks. 10 2023. arXiv:2311.00121.

  13. Jan Gavranovič and Borut Paul Kerševan. Systematic Evaluation of Generative Machine Learning Capability to Simulate Distributions of Observables at the Large Hadron Collider. 10 2023. arXiv:2310.08994.

  14. MicroBooNE Collaboration. Search for heavy neutral leptons in electron-positron and neutral-pion final states with the MicroBooNE detector. 10 2023. arXiv:2310.07660.

  15. Matthew Feickert, Lukas Heinrich, and Malin Horstmann. Bayesian Methodologies with pyhf. In 26th International Conference on Computing in High Energy & Nuclear Physics. 9 2023. arXiv:2309.17005.

  16. Mohamed Belfkir, Adil Jueid, and Salah Nasri. Boosting dark matter searches at muon colliders with machine learning: The mono-Higgs channel as a case study. Progress of Theoretical and Experimental Physics, 2023(12):123B03, 12 2023. arXiv:2309.11241, doi:10.1093/ptep/ptad144.

  17. Michael James Fenton, Alexander Shmakov, Hideki Okawa, Yuji Li, Ko-Yang Hsiao, Shih-Chieh Hsu, Daniel Whiteson, and Pierre Baldi. Reconstruction of Unstable Heavy Particles Using Deep Symmetry-Preserving Attention Networks. 9 2023. arXiv:2309.01886.

  18. ATLAS Collaboration. Search for short- and long-lived axion-like particles in $H\rightarrow a a \rightarrow 4\gamma $ decays with the ATLAS experiment at the LHC. ATLAS-CONF-2023-040, 2023. URL:

  19. Luc Darmé, Aldo Deandrea, and Farvah Mahmoudi. Gauge $SU(2)_f$ flavour transfers. 7 2023. arXiv:2307.09595.

  20. Jack Y. Araz. Spey: smooth inference for reinterpretation studies. 7 2023. arXiv:2307.06996.

  21. Mohammad Mahdi Altakach, Sabine Kraml, Andre Lessa, Sahana Narasimha, Timothée Pascal, and Wolfgang Waltenberger. SModelS v2.3: enabling global likelihood analyses. SciPost Phys., 15:185, 2023. arXiv:2306.17676, doi:10.21468/SciPostPhys.15.5.185.

  22. Giordon Stark, Camila Aristimuno Ots, and Mike Hance. Reduce, Reuse, Reinterpret: an end-to-end pipeline for recycling particle physics results. 6 2023. arXiv:2306.11055.

  23. Jay Chan. Investigation of Higgs Boson Decaying to Di-muon, Dark Matter Produced in Association with a Higgs Boson Decaying to $b$-quarks and Unbinned Profiled Unfolding. PhD thesis, University of Wisconsin-Madison, 5 2023. arXiv:2305.19436.

  24. Belle II Collaboration. Search for lepton-flavor-violating $\tau ^- \to \ell ^-\phi $ decays in 2019-2021 Belle II data. 5 2023. arXiv:2305.04759.

  25. Oksana Shadura and Alexander Held. First performance measurements with the Analysis Grand Challenge. 4 2023. arXiv:2304.05214.

  26. Qilong Guo, Leyun Gao, Yajun Mao, and Qiang Li. Vector-like lepton searches at a muon collider in the context of the 4321 model*. Chin. Phys. C, 47(10):103106, 2023. arXiv:2304.01885, doi:10.1088/1674-1137/ace5a7.

  27. Wenxing Zhang, Hao-Lin Li, Kun Liu, Michael J. Ramsey-Musolf, Yonghao Zeng, and Suntharan Arunasalam. Probing electroweak phase transition in the singlet Standard Model via bb\ensuremath \gamma \ensuremath \gamma and 4l channels. JHEP, 12:018, 2023. arXiv:2303.03612, doi:10.1007/JHEP12(2023)018.

  28. Subhasish Behera, Manuel Hageluken, and Matthias Schott. Prospects of Searches for Anomalous Hadronic Higgs Boson Decays at the LHeC. 2 2023. arXiv:2302.12885.

  29. Jay Chan and Benjamin Nachman. Unbinned profiled unfolding. Phys. Rev. D, 108(1):016002, 2023. arXiv:2302.05390, doi:10.1103/PhysRevD.108.016002.

  30. ATLAS Collaboration. Search for long-lived, massive particles in events with displaced vertices and multiple jets in pp collisions at $ \sqrt s $ = 13 TeV with the ATLAS detector. JHEP, 2306:200, 2023. arXiv:2301.13866, doi:10.1007/JHEP06(2023)200.

  31. Nicolas Berger. Simplified likelihoods using linearized systematic uncertainties. JHEP, 04:084, 2023. arXiv:2301.05676, doi:10.1007/JHEP04(2023)084.

  32. Belle Collaboration. Search for a Heavy Neutrino in \ensuremath \tau Decays at Belle. Phys. Rev. Lett., 131(21):211802, 2023. arXiv:2212.10095, doi:10.1103/PhysRevLett.131.211802.

  33. Belle II Collaboration. Search for an Invisible Z' in a Final State with Two Muons and Missing Energy at Belle II. Phys. Rev. Lett., 130(23):231801, 2023. arXiv:2212.03066, doi:10.1103/PhysRevLett.130.231801.

  34. Matthew Feickert, Lukas Heinrich, and Giordon Stark. pyhf: a pure-Python statistical fitting library with tensors and automatic differentiation. PoS, ICHEP2022:245, 11 2022. doi:10.22323/1.414.0245.

  35. Alexander Held and Oksana Shadura. The IRIS-HEP Analysis Grand Challenge. PoS, ICHEP2022:235, 11 2022. doi:10.22323/1.414.0235.

  36. Lina Alasfar. Phenomenology of the Higgs and Flavour Physics in the Standard Model and Beyond. PhD thesis, Humboldt U., Berlin, 2022. URL:, doi:10.18452/25336.

  37. Diptaparna Biswas. Search for a dark leptophilic scalar produced in association with taupair in electron-positron annihilation at center-of-mass energies near 10.58 GeV. PhD thesis, Louisville U., 10 2022. URL:, doi:10.18297/etd/3967.

  38. Guilherme Luis De Sousa Fihalo Guedes. A global approach to physics beyond the Standard Model. PhD thesis, Granada U., 9 2022. URL:

  39. Trygve Buanes, Iñaki Lara, Krzysztof Rolbiecki, and Kazuki Sakurai. LHC constraints on electroweakino dark matter revisited. Phys. Rev. D, 107(9):095021, 2023. arXiv:2208.04342, doi:10.1103/PhysRevD.107.095021.

  40. Lukas Allwicher, Darius. A. Faroughy, Florentin Jaffredo, Olcyr Sumensari, and Felix Wilsch. HighPT: A tool for high-pT Drell-Yan tails beyond the standard model. Comput. Phys. Commun., 289:108749, 2023. arXiv:2207.10756, doi:10.1016/j.cpc.2023.108749.

  41. Belle Collaboration. Search for a dark leptophilic scalar produced in association with $\tau ^+\tau ^-$ pair in $e^+e^-$ annihilation at center-of-mass energies near 10.58 GeV. 7 2022. arXiv:2207.07476.

  42. Gaël Alguero, Jack Y. Araz, Benjamin Fuks, and Sabine Kraml. Signal region combination with full and simplified likelihoods in MadAnalysis 5. SciPost Phys., 14(1):009, 2023. arXiv:2206.14870, doi:10.21468/SciPostPhys.14.1.009.

  43. Audrey Kvam. Search for Events with Two Displaced Vertices from Pair-Produced Neutral Long-Lived Particles Decaying to Hadronic Jets in the Muon Spectrometer of the ATLAS Detector with Full Run 2 Data. PhD thesis, Washington U., Seattle, 2022. URL:

  44. ATLAS Collaboration. Search for heavy, long-lived, charged particles with large ionisation energy loss in $pp$ collisions at $\sqrt s = 13 \text TeV$ using the ATLAS experiment and the full Run 2 dataset. JHEP, 2306:158, 2023. arXiv:2205.06013, doi:10.1007/JHEP06(2023)158.

  45. Lucas Santiago Borgna. Search for pair production of Higgs Bosons decaying to four bottom quarks with data collected by the ATLAS detector. PhD thesis, University Coll. London, 2022. URL:

  46. Alexander Albert and others. Strange quark as a probe for new physics in the Higgs sector. In 2022 Snowmass Summer Study. 3 2022. arXiv:2203.07535.

  47. Nathan Simpson and Lukas Heinrich. neos: End-to-End-Optimised Summary Statistics for High Energy Physics. 3 2022. arXiv:2203.05570.

  48. ATLAS Collaboration. Search for neutral long-lived particles in $pp$ collisions at $\sqrt s=13$ TeV that decay into displaced hadronic jets in the ATLAS calorimeter. JHEP, 06:005, 2022. arXiv:2203.01009, doi:10.1007/JHEP06(2022)005.

  49. ATLAS Collaboration. Search for events with a pair of displaced vertices from long-lived neutral particles decaying into hadronic jets in the ATLAS muon spectrometer in pp collisions at $\sqrt s$=13\,\,TeV. Phys. Rev. D, 106(3):032005, 2022. arXiv:2203.00587, doi:10.1103/PhysRevD.106.032005.

  50. Florentin Jaffredo. Revisiting mono-tau tails at the LHC. Eur. Phys. J. C, 82(6):541, 2022. arXiv:2112.14604, doi:10.1140/epjc/s10052-022-10504-9.

  51. Moritz Elias Hesping. Differential Cross Section Measurement of the $pp\rightarrow WH\rightarrow WWW$ Process With the ATLAS Experiment. PhD thesis, Johannes Gutenberg-Universität Mainz, 11 2021. URL:

  52. ATLAS Collaboration. Implementation of simplified likelihoods in HistFactory for searches for supersymmetry. Geneva, Sep 2021. URL:

  53. Michael J. Baker, Darius A. Faroughy, and Sokratis Trifinopoulos. Collider signatures of coannihilating dark matter in light of the B-physics anomalies. JHEP, 11:084, 2021. arXiv:2109.08689, doi:10.1007/JHEP11(2021)084.

  54. Kyle Cranmer and others. Publishing statistical models: Getting the most out of particle physics experiments. SciPost Phys., 12(1):037, 2022. arXiv:2109.04981, doi:10.21468/SciPostPhys.12.1.037.

  55. Kyle Cranmer and Alexander Held. Building and steering binned template fits with cabinetry. EPJ Web Conf., 251:03067, 2021. doi:10.1051/epjconf/202125103067.

  56. ATLAS Collaboration. Search for chargino–neutralino pair production in final states with three leptons and missing transverse momentum in \(\sqrt s = 13\,\text TeV\) \(pp\) collisions with the ATLAS detector. Eur. Phys. J. C, 81:1118, 2021. arXiv:2106.01676, doi:10.1140/epjc/s10052-021-09749-7.

  57. Belle II Collaboration. Search for $B^+ \to K^+ \nu \bar \nu $ decays with an inclusive tagging method at the Belle II experiment. In 55th Rencontres de Moriond on Electroweak Interactions and Unified Theories. 5 2021. arXiv:2105.05754.

  58. Belle II Collaboration. Search for B+\textrightarrow K+\ensuremath \nu \ensuremath \nu \textasciimacron Decays Using an Inclusive Tagging Method at Belle II. Phys. Rev. Lett., 127(18):181802, 2021. arXiv:2104.12624, doi:10.1103/PhysRevLett.127.181802.

  59. Andrei Angelescu, Damir Bečirević, Darius A. Faroughy, Florentin Jaffredo, and Olcyr Sumensari. Single leptoquark solutions to the B-physics anomalies. Phys. Rev. D, 104(5):055017, 2021. arXiv:2103.12504, doi:10.1103/PhysRevD.104.055017.

  60. Matthew Feickert, Lukas Heinrich, Giordon Stark, and Ben Galewsky. Distributed statistical inference with pyhf enabled through funcX. EPJ Web Conf., 251:02070, 2021. arXiv:2103.02182, doi:10.1051/epjconf/202125102070.

  61. Rodolfo Capdevilla, Federico Meloni, Rosa Simoniello, and Jose Zurita. Hunting wino and higgsino dark matter at the muon collider with disappearing tracks. JHEP, 06:133, 2021. arXiv:2102.11292, doi:10.1007/JHEP06(2021)133.

  62. Vincenzo Cirigliano, Kaori Fuyuto, Christopher Lee, Emanuele Mereghetti, and Bin Yan. Charged Lepton Flavor Violation at the EIC. JHEP, 03:256, 2021. arXiv:2102.06176, doi:10.1007/JHEP03(2021)256.

  63. Benjamin Fuks and others. Proceedings of the second MadAnalysis 5 workshop on LHC recasting in Korea. Mod. Phys. Lett. A, 36(01):2102001, 2021. arXiv:2101.02245, doi:10.1142/S0217732321020016.

  64. Wolfgang Waltenberger, André Lessa, and Sabine Kraml. Artificial Proto-Modelling: Building Precursors of a Next Standard Model from Simplified Model Results. JHEP, 03:207, 2021. arXiv:2012.12246, doi:10.1007/JHEP03(2021)207.

  65. Simone Amoroso, Deepak Kar, and Matthias Schott. How to discover QCD Instantons at the LHC. Eur. Phys. J. C, 81(7):624, 2021. arXiv:2012.09120, doi:10.1140/epjc/s10052-021-09412-1.

  66. Gaël Alguero, Jan Heisig, Charanjit K. Khosa, Sabine Kraml, Suchita Kulkarni, Andre Lessa, Philipp Neuhuber, Humberto Reyes-González, Wolfgang Waltenberger, and Alicia Wongel. New developments in SModelS. PoS, TOOLS2020:022, 2021. arXiv:2012.08192, doi:10.22323/1.392.0022.

  67. Matthew Feickert, Lukas Heinrich, and Giordon Stark. Likelihood preservation and statistical reproduction of searches for new physics. EPJ Web Conf., 245:06017, 2020. doi:10.1051/epjconf/202024506017.

  68. Gaël Alguero, Sabine Kraml, and Wolfgang Waltenberger. A SModelS interface for pyhf likelihoods. Comput. Phys. Commun., 264:107909, 2021. arXiv:2009.01809, doi:10.1016/j.cpc.2021.107909.

  69. ATLAS Collaboration. Search for new phenomena in events with two opposite-charge leptons, jets and missing transverse momentum in \(pp\) collisions at \(\sqrt s = 13\,\text TeV\) with the ATLAS detector. JHEP, 04:165, 2021. arXiv:2102.01444, doi:10.1007/JHEP04(2021)165.

  70. Charanjit K. Khosa, Sabine Kraml, Andre Lessa, Philipp Neuhuber, and Wolfgang Waltenberger. SModelS Database Update v1.2.3. LHEP, 2020:158, 2020. arXiv:2005.00555, doi:10.31526/lhep.2020.158.

  71. G. Brooijmans and others. Les Houches 2019 Physics at TeV Colliders: New Physics Working Group Report. In 11th Les Houches Workshop on Physics at TeV Colliders: PhysTeV Les Houches. 2 2020. arXiv:2002.12220.

  72. Andrei Angelescu, Darius A. Faroughy, and Olcyr Sumensari. Lepton Flavor Violation and Dilepton Tails at the LHC. Eur. Phys. J. C, 80(7):641, 2020. arXiv:2002.05684, doi:10.1140/epjc/s10052-020-8210-5.

  73. B. C. Allanach, Tyler Corbett, and Maeve Madigan. Sensitivity of Future Hadron Colliders to Leptoquark Pair Production in the Di-Muon Di-Jets Channel. Eur. Phys. J. C, 80(2):170, 2020. arXiv:1911.04455, doi:10.1140/epjc/s10052-020-7722-3.

  74. ATLAS Collaboration. Reproducing searches for new physics with the ATLAS experiment through publication of full statistical likelihoods. Geneva, Aug 2019. URL:

  75. Lukas Heinrich, Holger Schulz, Jessica Turner, and Ye-Ling Zhou. Constraining A$_4$ leptonic flavour model parameters at colliders and beyond. JHEP, 04:144, 2019. arXiv:1810.05648, doi:10.1007/JHEP04(2019)144.

General Citations

  1. Diyar Agin, Benjamin Fuks, Mark D. Goodsell, and Taylor Murphy. Monojets reveal overlapping excesses for light compressed higgsinos. 11 2023. arXiv:2311.17149.

  2. Rachel E. C. Smith, Inês Ochoa, Rúben Inácio, Jonathan Shoemaker, and Michael Kagan. Differentiable Vertex Fitting for Jet Flavour Tagging. 10 2023. arXiv:2310.12804.

  3. Matthew Feickert, Daniel S. Katz, Mark S. Neubauer, Elizabeth Sexton-Kennedy, and Graeme A. Stewart. Software Citation in HEP: Current State and Recommendations for the Future. In 26th International Conference on Computing in High Energy & Nuclear Physics. 9 2023. arXiv:2309.14571.

  4. Michael Kagan and Lukas Heinrich. Branches of a Tree: Taking Derivatives of Programs with Discrete and Branching Randomness in High Energy Physics. 8 2023. arXiv:2308.16680.

  5. Jonas Eschle and others. Potential of the Julia Programming Language for High Energy Physics Computing. Comput. Softw. Big Sci., 7(1):10, 2023. arXiv:2306.03675, doi:10.1007/s41781-023-00104-x.

  6. Brian Bockelman, Peter Elmer, and Gordon Watts. IRIS-HEP Strategic Plan for the Next Phase of Software Upgrades for HL-LHC Physics. 2 2023. arXiv:2302.01317.

  7. Florian Bury. Application of deep learning techniques in CMS: from matrix element regression to the search for Higgs boson pair production. PhD thesis, Université catholique de Louvain, 12 2022. URL:

  8. Mohamed Aly and others. Second Analysis Ecosystem Workshop Report. 12 2022. arXiv:2212.04889, doi:10.5281/zenodo.7418818.

  9. ATLAS Collaboration. SimpleAnalysis: Truth-level Analysis Framework. Geneva, Apr 2022. URL:, doi:10.17181/CERN.R6S3.0QKV.

  10. MODE Collaboration. Toward the end-to-end optimization of particle physics instruments with differentiable programming. Rev. Phys., 10:100085, 2023. arXiv:2203.13818, doi:10.1016/j.revip.2023.100085.

  11. Harry Enke and others. Survey of Open Data Concepts Within Fundamental Physics: An Initiative of the PUNCH4NFDI Consortium. Computing and Software for Big Science, 6(1):6, Mar 2022. URL:, doi:10.1007/s41781-022-00081-7.

  12. Lukas Heinrich and Michael Kagan. Differentiable Matrix Elements with MadJax. 2 2022. arXiv:2203.00057.

  13. Jim Pivarski, Eduardo Rodrigues, Kevin Pedro, Oksana Shadura, Benjamin Krikler, and Graeme A. Stewart. HL-LHC Computing Review Stage 2, Common Software Projects: Data Science Tools for Analysis. 2 2022. arXiv:2202.02194.

  14. Jean-Loup Tastet, Oleg Ruchayskiy, and Inar Timiryasov. Reinterpreting the ATLAS bounds on heavy neutral leptons in a realistic neutrino oscillation model. JHEP, 12:182, 2021. arXiv:2107.12980, doi:10.1007/JHEP12(2021)182.

  15. Beojan Stanislaus. Searching for Beyond the Standard Model Resonances in the $HH \to b\bar bb\bar b$ Final State Using the ATLAS Detector. PhD thesis, University of Oxford, 10 2020. URL:

  16. ATLAS Collaboration. ATLAS HL-LHC Computing Conceptual Design Report. 9 2020. URL:

  17. Jeffrey Krupa and others. GPU coprocessors as a service for deep learning inference in high energy physics. Mach. Learn. Sci. Tech., 2(3):035005, 2021. arXiv:2007.10359, doi:10.1088/2632-2153/abec21.

  18. Waleed Abdallah and others. Reinterpretation of LHC Results for New Physics: Status and Recommendations after Run 2. SciPost Phys., 9(2):022, 2020. arXiv:2003.07868, doi:10.21468/SciPostPhys.9.2.022.

  19. J. Alison and others. Higgs boson potential at colliders: Status and perspectives. Rev. Phys., 5:100045, 2020. arXiv:1910.00012, doi:10.1016/j.revip.2020.100045.

  20. Johann Brehmer, Felix Kling, Irina Espejo, and Kyle Cranmer. MadMiner: Machine learning-based inference for particle physics. Comput. Softw. Big Sci., 4(1):3, 2020. arXiv:1907.10621, doi:10.1007/s41781-020-0035-2.

Published Statistical Models

The following is an updating list of HEPData entries for publications using HistFactory JSON statistical models.


There is also an automatically generated list of statistical models that is updated nightly available at

  1. Observation of single-top-quark production in association with a photon using the ATLAS detector. 2023. URL:, doi:10.17182/hepdata.134244.

  2. Search for supersymmetry in final states with missing transverse momentum and three or more b-jets in $139 \text fb^-1$ of proton-proton collisions at $\sqrt s = 13$ TeV with the ATLAS detector. 2022. URL:, doi:10.17182/hepdata.95928.

  3. Measurement of single top-quark production in the s-channel in proton−proton collisions at $\mathrm \sqrt s=13$ TeV with the ATLAS detector. 2023. URL:, doi:10.17182/hepdata.133620.

  4. Search for flavour-changing neutral-current couplings between the top quark and the photon with the ATLAS detector at $\sqrt s = 13$ TeV. 2022. URL:, doi:10.17182/hepdata.129959.

  5. Searches for new phenomena in events with two leptons, jets, and missing transverse momentum in $139 \text fb^-1$ of $\sqrt s=13 $TeV $pp$ collisions with the ATLAS detector. 2022. URL:, doi:10.17182/hepdata.116034.

  6. Search for Higgs boson pair production in the two bottom quarks plus two photons final state in $pp$ collisions at $\sqrt s=13$ TeV with the ATLAS detector. 2021. URL:, doi:10.17182/hepdata.105864.

  7. Search for charginos and neutralinos in final states with two boosted hadronically decaying bosons and missing transverse momentum in $pp$ collisions at $\sqrt s=13$ TeV with the ATLAS detector. 2021. URL:, doi:10.17182/hepdata.104458.

  8. Measurement of the $t\bar tt\bar t$ production cross section in $pp$ collisions at $\sqrt s$=13 TeV with the ATLAS detector. 2021. URL:, doi:10.17182/hepdata.105039.

  9. Search for R-parity violating supersymmetry in a final state containing leptons and many jets with the ATLAS experiment using $\sqrt s = 13$ TeV proton-proton collision data. 2021. URL:, doi:10.17182/hepdata.104860.

  10. Search for chargino–neutralino pair production in final states with three leptons and missing transverse momentum in $\sqrt s = 13$ TeV $pp$ collisions with the ATLAS detector. 2021. URL:, doi:10.17182/hepdata.95751.

  11. Measurements of the inclusive and differential production cross sections of a top-quark-antiquark pair in association with a $Z$ boson at $\sqrt s = 13$ TeV with the ATLAS detector. 2021. URL:, doi:10.17182/hepdata.100351.

  12. Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ-lepton in $pp$ collisions at $ \sqrt s $ = 13 TeV with the ATLAS detector. 2021. URL:, doi:10.17182/hepdata.100174.

  13. Search for squarks and gluinos in final states with one isolated lepton, jets, and missing transverse momentum at $\sqrt s=13$ with the ATLAS detector. 2021. URL:, doi:10.17182/hepdata.97041.

  14. Search for trilepton resonances from chargino and neutralino pair production in $\sqrt s$ = 13 TeV $pp$ collisions with the ATLAS detector. 2020. URL:, doi:10.17182/hepdata.99806.

  15. Search for Displaced Leptons in $\sqrt s = 13$ TeV $pp$ Collisions with the ATLAS Detector. 2020. URL:, doi:10.17182/hepdata.98796.

  16. Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fb$^-1$ of $\sqrt s$ =13 TeV $pp$ collision data with the ATLAS detector. 2020. URL:, doi:10.17182/hepdata.95664.

  17. Evidence for $t\bar tt\bar t$ production in the multilepton final state in proton-proton collisions at $\sqrt s=13$ $\text TeV$ with the ATLAS detector. 2020. URL:, doi:10.17182/hepdata.100170.

  18. Measurement of the $t\bar t$ production cross-section in the lepton+jets channel at $\sqrt s=13$ TeV with the ATLAS experiment. 2020. URL:, doi:10.17182/hepdata.95748.

  19. Search for long-lived, massive particles in events with a displaced vertex and a muon with large impact parameter in $pp$ collisions at $\sqrt s = 13$ TeV with the ATLAS detector. 2020. URL:, doi:10.17182/hepdata.91760.

  20. Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in $\sqrt s$ = 13 TeV $pp$ collisions with the ATLAS detector. 2019. URL:, doi:10.17182/hepdata.91127.

  21. Searches for electroweak production of supersymmetric particles with compressed mass spectra in $\sqrt s=$ 13 TeV $pp$ collisions with the ATLAS detector. 2019. URL:, doi:10.17182/hepdata.91374.

  22. Search for direct stau production in events with two hadronic τ-leptons in $\sqrt s = 13$ TeV $pp$ collisions with the ATLAS detector. 2019. URL:, doi:10.17182/hepdata.92006.

  23. Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two $b$-jets in (pp) collisions at $\sqrt s=13$ TeV with the ATLAS detector. 2019. URL:, doi:10.17182/hepdata.90607.v2.

  24. Search for squarks and gluinos in final states with same-sign leptons and jets using 139 fb$^-1$ of data collected with the ATLAS detector. 2019. URL:, doi:10.17182/hepdata.91214.v3.

  25. Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in $\sqrt s=13$ TeV $pp$ collisions using the ATLAS detector. 2019. URL:, doi:10.17182/hepdata.89413.

  26. Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, $b$-jets and missing transverse momentum. 2019. URL:, doi:10.17182/hepdata.89408.


ATLAS maintains a public listing of all published statistical models on the ATLAS public results page which can be found by filtering all public results by the “Likelihood available” analysis characteristics keyword.