[docs]deftoms748_scan(data,model,bounds_low,bounds_up,level=0.05,atol=2e-12,rtol=1e-4,from_upper_limit_fn=False,**hypotest_kwargs,):""" Calculate an upper limit interval ``(0, poi_up)`` for a single Parameter of Interest (POI) using an automatic scan through POI-space, using the :func:`~scipy.optimize.toms748` algorithm. Example: >>> import numpy as np >>> import pyhf >>> pyhf.set_backend("numpy") >>> model = pyhf.simplemodels.uncorrelated_background( ... signal=[12.0, 11.0], bkg=[50.0, 52.0], bkg_uncertainty=[3.0, 7.0] ... ) >>> observations = [51, 48] >>> data = pyhf.tensorlib.astensor(observations + model.config.auxdata) >>> obs_limit, exp_limits = pyhf.infer.intervals.upper_limits.toms748_scan( ... data, model, 0., 5., rtol=0.01 ... ) >>> obs_limit array(1.01156939) >>> exp_limits [array(0.5600747), array(0.75702605), array(1.06234693), array(1.50116923), array(2.05078912)] Args: data (:obj:`tensor`): The observed data. model (~pyhf.pdf.Model): The statistical model adhering to the schema ``model.json``. bounds_low (:obj:`float`): Lower boundary of search interval. bounds_up (:obj:`float`): Upper boundary of search interval. level (:obj:`float`): The threshold value to evaluate the interpolated results at. Defaults to ``0.05``. atol (:obj:`float`): Absolute tolerance. The iteration will end when the result is within absolute *or* relative tolerance of the true limit. rtol (:obj:`float`): Relative tolerance. For optimal performance this argument should be set to the highest acceptable relative tolerance. hypotest_kwargs (:obj:`string`): Kwargs for the calls to :class:`~pyhf.infer.hypotest` to configure the fits. Returns: Tuple of Tensors: - Tensor: The observed upper limit on the POI. - Tensor: The expected upper limits on the POI. .. versionadded:: 0.7.0 """cache={}deff_cached(poi):ifpoinotincache:cache[poi]=hypotest(poi,data,model,return_expected_set=True,**hypotest_kwargs,)returncache[poi]deff(poi,level,limit=0):# Use integers for limit so we don't need a string comparison# limit == 0: Observed# else: expectedreturn(f_cached(poi)[0]-leveliflimit==0elsef_cached(poi)[1][limit-1]-level)defbest_bracket(limit):# return best bracketks=np.asarray(list(cache))vals=np.asarray([value[0]-leveliflimit==0elsevalue[1][limit-1]-levelforvalueincache.values()])pos=vals>=0neg=vals<0lower=ks[pos][np.argmin(vals[pos])]upper=ks[neg][np.argmax(vals[neg])]return(lower,upper)# extend bounds_low and bounds_up if they don't bracket CLs levellower_results=f_cached(bounds_low)# {lower,upper}_results[0] is an array and {lower,upper}_results[1] is a# list of arrays so need to turn {lower,upper}_results[0] into list to# concatenate themwhilenp.any(np.asarray([lower_results[0]]+lower_results[1])<level):bounds_low/=2lower_results=f_cached(bounds_low)upper_results=f_cached(bounds_up)whilenp.any(np.asarray([upper_results[0]]+upper_results[1])>level):bounds_up*=2upper_results=f_cached(bounds_up)tb,_=get_backend()obs=tb.astensor(toms748(f,bounds_low,bounds_up,args=(level,0),k=2,xtol=atol,rtol=rtol))exp=[tb.astensor(toms748(f,*best_bracket(idx),args=(level,idx),k=2,xtol=atol,rtol=rtol))foridxinrange(1,6)]iffrom_upper_limit_fn:returnobs,exp,(list(cache),list(cache.values()))returnobs,exp
[docs]deflinear_grid_scan(data,model,scan,level=0.05,return_results=False,**hypotest_kwargs):""" Calculate an upper limit interval ``(0, poi_up)`` for a single Parameter of Interest (POI) using a linear scan through POI-space. Example: >>> import numpy as np >>> import pyhf >>> pyhf.set_backend("numpy") >>> model = pyhf.simplemodels.uncorrelated_background( ... signal=[12.0, 11.0], bkg=[50.0, 52.0], bkg_uncertainty=[3.0, 7.0] ... ) >>> observations = [51, 48] >>> data = pyhf.tensorlib.astensor(observations + model.config.auxdata) >>> scan = np.linspace(0, 5, 21) >>> obs_limit, exp_limits, (scan, results) = pyhf.infer.intervals.upper_limits.upper_limit( ... data, model, scan, return_results=True ... ) >>> obs_limit array(1.01764089) >>> exp_limits [array(0.59576921), array(0.76169166), array(1.08504773), array(1.50170482), array(2.06654952)] Args: data (:obj:`tensor`): The observed data. model (~pyhf.pdf.Model): The statistical model adhering to the schema ``model.json``. scan (:obj:`iterable`): Iterable of POI values. level (:obj:`float`): The threshold value to evaluate the interpolated results at. return_results (:obj:`bool`): Whether to return the per-point results. hypotest_kwargs (:obj:`string`): Kwargs for the calls to :class:`~pyhf.infer.hypotest` to configure the fits. Returns: Tuple of Tensors: - Tensor: The observed upper limit on the POI. - Tensor: The expected upper limits on the POI. - Tuple of Tensors: The given ``scan`` along with the :class:`~pyhf.infer.hypotest` results at each test POI. Only returned when ``return_results`` is ``True``. .. versionadded:: 0.7.0 """tb,_=get_backend()results=[hypotest(mu,data,model,return_expected_set=True,**hypotest_kwargs)formuinscan]obs=tb.astensor([[r[0]]forrinresults])exp=tb.astensor([[r[1][idx]foridxinrange(5)]forrinresults])result_array=tb.concatenate([obs,exp],axis=1).T# observed limit and the (0, +-1, +-2)sigma expected limitslimits=[_interp(level,result_array[idx][::-1],scan[::-1])foridxinrange(6)]obs_limit,exp_limits=limits[0],limits[1:]ifreturn_results:returnobs_limit,exp_limits,(scan,results)returnobs_limit,exp_limits
[docs]defupper_limit(data,model,scan=None,level=0.05,return_results=False,**hypotest_kwargs):""" Calculate an upper limit interval ``(0, poi_up)`` for a single Parameter of Interest (POI) using root-finding or a linear scan through POI-space. Example: >>> import numpy as np >>> import pyhf >>> pyhf.set_backend("numpy") >>> model = pyhf.simplemodels.uncorrelated_background( ... signal=[12.0, 11.0], bkg=[50.0, 52.0], bkg_uncertainty=[3.0, 7.0] ... ) >>> observations = [51, 48] >>> data = pyhf.tensorlib.astensor(observations + model.config.auxdata) >>> scan = np.linspace(0, 5, 21) >>> obs_limit, exp_limits, (scan, results) = pyhf.infer.intervals.upper_limits.upper_limit( ... data, model, scan, return_results=True ... ) >>> obs_limit array(1.01764089) >>> exp_limits [array(0.59576921), array(0.76169166), array(1.08504773), array(1.50170482), array(2.06654952)] Args: data (:obj:`tensor`): The observed data. model (~pyhf.pdf.Model): The statistical model adhering to the schema ``model.json``. scan (:obj:`iterable` or ``None``): Iterable of POI values or ``None`` to use :class:`~pyhf.infer.intervals.upper_limits.toms748_scan`. level (:obj:`float`): The threshold value to evaluate the interpolated results at. return_results (:obj:`bool`): Whether to return the per-point results. Returns: Tuple of Tensors: - Tensor: The observed upper limit on the POI. - Tensor: The expected upper limits on the POI. - Tuple of Tensors: The given ``scan`` along with the :class:`~pyhf.infer.hypotest` results at each test POI. Only returned when ``return_results`` is ``True``. .. versionadded:: 0.7.0 """ifscanisnotNone:returnlinear_grid_scan(data,model,scan,level,return_results,**hypotest_kwargs)# else:bounds=model.config.suggested_bounds()[model.config.par_slice(model.config.poi_name).start]obs_limit,exp_limit,results=toms748_scan(data,model,bounds[0],bounds[1],from_upper_limit_fn=True,**hypotest_kwargs,)ifreturn_results:returnobs_limit,exp_limit,resultsreturnobs_limit,exp_limit