Source code for pyhf.modifiers.normfactor

import logging

from pyhf import get_backend, events
from pyhf.parameters import ParamViewer

log = logging.getLogger(__name__)


[docs] def required_parset(sample_data, modifier_data): return { 'paramset_type': 'unconstrained', 'n_parameters': 1, 'is_scalar': True, 'inits': (1.0,), 'bounds': ((0, 10),), 'fixed': False, }
[docs] class normfactor_builder: """Builder class for collecting normfactor modifier data""" is_shared = True
[docs] def __init__(self, config): self.builder_data = {} self.config = config self.required_parsets = {}
[docs] def collect(self, thismod, nom): maskval = True if thismod else False mask = [maskval] * len(nom) return {'mask': mask}
[docs] def append(self, key, channel, sample, thismod, defined_samp): self.builder_data.setdefault(key, {}).setdefault(sample, {}).setdefault( 'data', {'mask': []} ) nom = ( defined_samp['data'] if defined_samp else [0.0] * self.config.channel_nbins[channel] ) moddata = self.collect(thismod, nom) self.builder_data[key][sample]['data']['mask'] += moddata['mask'] if thismod: self.required_parsets.setdefault( thismod['name'], [required_parset(defined_samp['data'], thismod['data'])], )
[docs] def finalize(self): return self.builder_data
[docs] class normfactor_combined: name = 'normfactor' op_code = 'multiplication'
[docs] def __init__(self, modifiers, pdfconfig, builder_data, batch_size=None): self.batch_size = batch_size keys = [f'{mtype}/{m}' for m, mtype in modifiers] normfactor_mods = [m for m, _ in modifiers] parfield_shape = ( (self.batch_size, pdfconfig.npars) if self.batch_size else (pdfconfig.npars,) ) self.param_viewer = ParamViewer( parfield_shape, pdfconfig.par_map, normfactor_mods ) self._normfactor_mask = [ [[builder_data[m][s]['data']['mask']] for s in pdfconfig.samples] for m in keys ] self._precompute() events.subscribe('tensorlib_changed')(self._precompute)
[docs] def _precompute(self): tensorlib, _ = get_backend() if not self.param_viewer.index_selection: return self.normfactor_mask = tensorlib.tile( tensorlib.astensor(self._normfactor_mask), (1, 1, self.batch_size or 1, 1) ) self.normfactor_mask_bool = tensorlib.astensor( self.normfactor_mask, dtype="bool" ) self.normfactor_default = tensorlib.ones(self.normfactor_mask.shape)
[docs] def apply(self, pars): """ Returns: modification tensor: Shape (n_modifiers, n_global_samples, n_alphas, n_global_bin) """ if not self.param_viewer.index_selection: return tensorlib, _ = get_backend() if self.batch_size is None: normfactors = self.param_viewer.get(pars) results_normfactor = tensorlib.einsum( 'msab,m->msab', self.normfactor_mask, normfactors ) else: normfactors = self.param_viewer.get(pars) results_normfactor = tensorlib.einsum( 'msab,ma->msab', self.normfactor_mask, normfactors ) results_normfactor = tensorlib.where( self.normfactor_mask_bool, results_normfactor, self.normfactor_default ) return results_normfactor