Multibin Coupled HistoSys#

[1]:
import json
import logging

import matplotlib.pyplot as plt
import numpy as np

import pyhf
from pyhf import Model
from pyhf.contrib.viz import brazil

logging.basicConfig(level=logging.INFO)
[2]:
def prep_data(sourcedata):
    spec = {
        "channels": [
            {
                "name": "signal",
                "samples": [
                    {
                        "name": "signal",
                        "data": sourcedata["signal"]["bindata"]["sig"],
                        "modifiers": [
                            {"name": "mu", "type": "normfactor", "data": None}
                        ],
                    },
                    {
                        "name": "bkg1",
                        "data": sourcedata["signal"]["bindata"]["bkg1"],
                        "modifiers": [
                            {
                                "name": "coupled_histosys",
                                "type": "histosys",
                                "data": {
                                    "lo_data": sourcedata["signal"]["bindata"][
                                        "bkg1_dn"
                                    ],
                                    "hi_data": sourcedata["signal"]["bindata"][
                                        "bkg1_up"
                                    ],
                                },
                            }
                        ],
                    },
                    {
                        "name": "bkg2",
                        "data": sourcedata["signal"]["bindata"]["bkg2"],
                        "modifiers": [
                            {
                                "name": "coupled_histosys",
                                "type": "histosys",
                                "data": {
                                    "lo_data": sourcedata["signal"]["bindata"][
                                        "bkg2_dn"
                                    ],
                                    "hi_data": sourcedata["signal"]["bindata"][
                                        "bkg2_up"
                                    ],
                                },
                            }
                        ],
                    },
                ],
            },
            {
                "name": "control",
                "samples": [
                    {
                        "name": "background",
                        "data": sourcedata["control"]["bindata"]["bkg1"],
                        "modifiers": [
                            {
                                "name": "coupled_histosys",
                                "type": "histosys",
                                "data": {
                                    "lo_data": sourcedata["control"]["bindata"][
                                        "bkg1_dn"
                                    ],
                                    "hi_data": sourcedata["control"]["bindata"][
                                        "bkg1_up"
                                    ],
                                },
                            }
                        ],
                    }
                ],
            },
        ]
    }
    pdf = Model(spec, poi_name="mu")
    data = []
    for channel in pdf.config.channels:
        data += sourcedata[channel]["bindata"]["data"]
    data = data + pdf.config.auxdata
    return data, pdf
[3]:
validation_datadir = "../../../validation/data"
[4]:
with open(
    validation_datadir + "/2bin_2channel_coupledhisto.json", encoding="utf-8"
) as spec:
    source = json.load(spec)

data, pdf = prep_data(source["channels"])

print(f"data: {data}")

init_pars = pdf.config.suggested_init()
par_bounds = pdf.config.suggested_bounds()

unconpars = pyhf.infer.mle.fit(data, pdf, init_pars, par_bounds)
print(f"parameters post unconstrained fit: {unconpars}")

conpars = pyhf.infer.mle.fixed_poi_fit(0.0, data, pdf, init_pars, par_bounds)
print(f"parameters post constrained fit: {conpars}")

pdf.expected_data(conpars)
INFO:pyhf.pdf:Validating spec against schema: model.json
INFO:pyhf.pdf:adding modifier coupled_histosys (1 new nuisance parameters)
INFO:pyhf.pdf:adding modifier mu (1 new nuisance parameters)
data: [110.0, 105.0, 170.0, 220.0, 0.0]
parameters post unconstrained fit: [-0.30257894  0.63607078]
parameters post constrained fit: [0.29087602 0.        ]
[4]:
array([106.80676913, 104.01075137, 154.36314037, 213.86871072,
         0.29087602])
[5]:
def invert_interval(test_mus, cls_obs, cls_exp, test_size=0.05):
    crossing_test_stats = {"exp": [], "obs": None}
    for cls_exp_sigma in cls_exp:
        crossing_test_stats["exp"].append(
            np.interp(
                test_size, list(reversed(cls_exp_sigma)), list(reversed(test_mus))
            )
        )
    crossing_test_stats["obs"] = np.interp(
        test_size, list(reversed(cls_obs)), list(reversed(test_mus))
    )
    return crossing_test_stats
[6]:
test_pois = np.linspace(0, 5, 61)
results = [
    pyhf.infer.hypotest(
        test_poi, data, pdf, init_pars, par_bounds, return_expected_set=True
    )
    for test_poi in test_pois
]
cls_obs = np.array([result[0] for result in results]).flatten()
cls_exp = [np.array([result[1][i] for result in results]).flatten() for i in range(5)]
[7]:
fig, ax = plt.subplots()
fig.set_size_inches(7, 5)

artists = brazil.plot_results(test_pois, results, ax=ax)
invert_interval(test_pois, cls_obs, cls_exp)
[7]:
{'exp': [0.3379557904310767,
  0.6355433028074602,
  0.980748685945719,
  1.4196566943996904,
  1.9446272307776151],
 'obs': 1.5452056912523955}
../../_images/examples_notebooks_multichannel-coupled-histo_7_1.png