pyhf.contrib.viz.brazil.plot_results#
- pyhf.contrib.viz.brazil.plot_results(test_pois, tests, test_size=0.05, ax=None, **kwargs)[source]#
Plot a series of hypothesis tests for various POI values. For more detail on use of keywords see
plot_brazil_band()
andplot_cls_components()
.Example
A Brazil band plot.
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> import pyhf >>> import pyhf.contrib.viz.brazil >>> pyhf.set_backend("numpy") >>> model = pyhf.simplemodels.uncorrelated_background( ... signal=[12.0, 11.0], bkg=[50.0, 52.0], bkg_uncertainty=[3.0, 7.0] ... ) >>> observations = [51, 48] >>> data = observations + model.config.auxdata >>> test_pois = np.linspace(0, 5, 41) >>> results = [ ... pyhf.infer.hypotest(test_poi, data, model, return_expected_set=True) ... for test_poi in test_pois ... ] >>> fig, ax = plt.subplots() >>> artists = pyhf.contrib.viz.brazil.plot_results(test_pois, results, ax=ax)
A Brazil band plot with the components of the \(\mathrm{CL}_{s}\) ratio drawn on top.
>>> import numpy as np >>> import matplotlib.pyplot as plt >>> import pyhf >>> import pyhf.contrib.viz.brazil >>> pyhf.set_backend("numpy") >>> model = pyhf.simplemodels.uncorrelated_background( ... signal=[12.0, 11.0], bkg=[50.0, 52.0], bkg_uncertainty=[3.0, 7.0] ... ) >>> observations = [51, 48] >>> data = observations + model.config.auxdata >>> test_pois = np.linspace(0, 5, 41) >>> results = [ ... pyhf.infer.hypotest( ... test_poi, data, model, return_expected_set=True, return_tail_probs=True ... ) ... for test_poi in test_pois ... ] >>> fig, ax = plt.subplots() >>> artists = pyhf.contrib.viz.brazil.plot_results( ... test_pois, results, ax=ax, components=True ... )
- Parameters:
test_pois (
list
orarray
) – The values of the POI where the hypothesis tests were performed.tests (
list
orarray
) – The collection of \(p\)-value-like values (\(\mathrm{CL}_{s}\) values or tail probabilities) from the hypothesis tests. If thecomponents
keyword argument isTrue
,tests
is required to have the same structure aspyhf.infer.hypotest()
’s return when usingreturn_expected_set=True
andreturn_tail_probs=True
: a tuple of \(\mathrm{CL}_{s}\), \(\left[\mathrm{CL}_{s+b}, \mathrm{CL}_{b}\right]\), \(\mathrm{CL}_{s,\mathrm{exp}}\) band.test_size (
float
) – The size, \(\alpha\), of the test.ax (
matplotlib.axes.Axes
) – The matplotlib axis object to plot on.
- Returns:
Artist containing the
matplotlib.artist
objects drawn.- Return type: