pyhf.simplemodels.correlated_background#
- pyhf.simplemodels.correlated_background(signal, bkg, bkg_up, bkg_down, batch_size=None, validate=True, poi_name='mu')[source]#
Construct a simple single channel
Model
with ahistosys
modifier representing a background with a fully correlated bin-by-bin uncertainty.- Parameters:
signal (
list
) – The data in the signal sample.bkg (
list
) – The data in the background sample.bkg_up (
list
) – The background sample under an upward variation corresponding to \(\alpha=+1\).bkg_down (
list
) – The background sample under a downward variation corresponding to \(\alpha=-1\).batch_size (
None
orint
) – Number of simultaneous (batched) Models to compute.validate (
bool
) – IfTrue
, validate the model before returning. Only set this toFalse
if you have an experimental use case and know what you’re doing.poi_name (
str
) – TheModel
parameter of interest name. Defaults to"mu"
.
- Returns:
The statistical model adhering to the
model.json
schema.- Return type:
Changed in version 0.8.0: Added
poi_name
argument.Example
>>> import pyhf >>> pyhf.set_backend("numpy") >>> model = pyhf.simplemodels.correlated_background( ... signal=[12.0, 11.0], ... bkg=[50.0, 52.0], ... bkg_up=[45.0, 57.0], ... bkg_down=[55.0, 47.0], ... ) >>> model.schema 'model.json' >>> model.config.channels ['single_channel'] >>> model.config.samples ['background', 'signal'] >>> model.config.parameters ['correlated_bkg_uncertainty', 'mu'] >>> model.expected_data(model.config.suggested_init()) array([62., 63., 0.])