pyhf.infer.calculators.generate_asimov_data#
- pyhf.infer.calculators.generate_asimov_data(asimov_mu, data, pdf, init_pars, par_bounds, fixed_params, return_fitted_pars=False)[source]#
Compute Asimov Dataset (expected yields at best-fit values) for a given POI value.
Example
>>> import pyhf >>> pyhf.set_backend("numpy") >>> model = pyhf.simplemodels.uncorrelated_background( ... signal=[12.0, 11.0], bkg=[50.0, 52.0], bkg_uncertainty=[3.0, 7.0] ... ) >>> observations = [51, 48] >>> data = observations + model.config.auxdata >>> mu_test = 1.0 >>> pyhf.infer.calculators.generate_asimov_data(mu_test, data, model, None, None, None) array([ 60.61229858, 56.52802479, 270.06832542, 48.31545488]) >>> pyhf.infer.calculators.generate_asimov_data( ... mu_test, data, model, None, None, None, return_fitted_pars=True ... ) (array([ 60.61229858, 56.52802479, 270.06832542, 48.31545488]), array([1. , 0.97224597, 0.87553894]))
- Parameters:
asimov_mu (
float) – The value for the parameter of interest to be used.data (
tensor) – The observed data.pdf (Model) – The statistical model adhering to the schema
model.json.init_pars (
tensoroffloat) – The starting values of the model parameters for minimization.par_bounds (
tensor) – The extrema of values the model parameters are allowed to reach in the fit. The shape should be(n, 2)fornmodel parameters.fixed_params (
tupleorlistofbool) – The flag to set a parameter constant to its starting value during minimization.return_fitted_pars (
bool) – Return the best-fit parameter values for the givenasimov_mu.
- Returns:
The Asimov dataset.
The Asimov parameters. Only returned if
return_fitted_parsisTrue.
- Return type:
A Tensor or a Tuple of two Tensors