pyhf.infer.test_statistics.q0#
- pyhf.infer.test_statistics.q0(mu, data, pdf, init_pars, par_bounds, fixed_params, return_fitted_pars=False)[source]#
The test statistic, \(q_{0}\), for discovery of a positive signal as defined in Equation (12) in [1007.1727], for \(\mu=0\).
\begin{equation} q_{0} = \left\{\begin{array}{ll} -2\ln\lambda\left(0\right), &\hat{\mu} \ge 0,\\ 0, & \hat{\mu} < 0, \end{array}\right. \end{equation}Example
>>> import pyhf >>> pyhf.set_backend("numpy") >>> model = pyhf.simplemodels.uncorrelated_background( ... signal=[12.0, 11.0], bkg=[50.0, 52.0], bkg_uncertainty=[3.0, 7.0] ... ) >>> observations = [60, 65] >>> data = pyhf.tensorlib.astensor(observations + model.config.auxdata) >>> test_mu = 0.0 >>> init_pars = model.config.suggested_init() >>> par_bounds = model.config.suggested_bounds() >>> fixed_params = model.config.suggested_fixed() >>> pyhf.infer.test_statistics.q0(test_mu, data, model, init_pars, par_bounds, fixed_params) array(2.98339447) >>> pyhf.infer.test_statistics.q0( ... test_mu, data, model, init_pars, par_bounds, fixed_params, return_fitted_pars=True ... ) (array(2.98339447), (array([0. , 1.03050845, 1.12128752]), array([0.95260667, 0.99635345, 1.02140172])))
- Parameters:
mu (Number or Tensor) – The signal strength parameter (must be set to zero)
data (Tensor) – The data to be considered
pdf (Model) – The HistFactory statistical model used in the likelihood ratio calculation
init_pars (
list
offloat
) – The starting values of the model parameters for minimization.par_bounds (
list
oflist
/tuple
) – The extrema of values the model parameters are allowed to reach in the fit. The shape should be(n, 2)
forn
model parameters.fixed_params (
tuple
orlist
ofbool
) – The flag to set a parameter constant to its starting value during minimization.return_fitted_pars (
bool
) – Return the best-fit parameter tensors the fixed-POI and unconstrained fits have converged on (i.e. \(\mu, \hat{\hat{\theta}}\) and \(\hat{\mu}, \hat{\theta}\))
- Returns:
The calculated test statistic, \(q_{0}\)
The parameter tensors corresponding to the constrained best fit, \(\mu, \hat{\hat{\theta}}\), and the unconstrained best fit, \(\hat{\mu}, \hat{\theta}\). Only returned if
return_fitted_pars
isTrue
.
- Return type:
Tuple of a Float and a Tuple of Tensors