pyhf.infer.hypotest#
- pyhf.infer.hypotest(poi_test, data, pdf, init_pars=None, par_bounds=None, fixed_params=None, calctype='asymptotics', return_tail_probs=False, return_expected=False, return_expected_set=False, return_calculator=False, **kwargs)[source]#
Compute \(p\)-values and test statistics for a single value of the parameter of interest.
See
AsymptoticCalculator
andToyCalculator
on additional keyword arguments to be specified.Example
>>> import pyhf >>> pyhf.set_backend("numpy") >>> model = pyhf.simplemodels.uncorrelated_background( ... signal=[12.0, 11.0], bkg=[50.0, 52.0], bkg_uncertainty=[3.0, 7.0] ... ) >>> observations = [51, 48] >>> data = pyhf.tensorlib.astensor(observations + model.config.auxdata) >>> mu_test = 1.0 >>> CLs_obs, CLs_exp_band = pyhf.infer.hypotest( ... mu_test, data, model, return_expected_set=True, test_stat="qtilde" ... ) >>> CLs_obs array(0.05251497) >>> CLs_exp_band [array(0.00260626), array(0.01382005), array(0.06445321), array(0.23525644), array(0.57303621)]
- Parameters:
poi_test (Number or Tensor) – The value of the parameter of interest (POI)
data (Number or Tensor) – The data considered
pdf (Model) – The statistical model adhering to the schema
model.json
init_pars (
tensor
offloat
) – The starting values of the model parameters for minimization.par_bounds (
tensor
) – The extrema of values the model parameters are allowed to reach in the fit. The shape should be(n, 2)
forn
model parameters.fixed_params (
tuple
orlist
ofbool
) – The flag to set a parameter constant to its starting value during minimization.calctype (
str
) – The calculator to create. Choose either ‘asymptotics’ (default) or ‘toybased’.return_tail_probs (
bool
) – Bool for returning \(\mathrm{CL}_{s+b}\) and \(\mathrm{CL}_{b}\)return_expected (
bool
) – Bool for returning \(\mathrm{CL}_{\mathrm{exp}}\)return_expected_set (
bool
) – Bool for returning the \((-2,-1,0,1,2)\sigma\) \(\mathrm{CL}_{\mathrm{exp}}\) — the “Brazil band”return_calculator (
bool
) – Bool for returning calculator.
- Returns:
Tuple of Floats and lists of Floats and a
AsymptoticCalculator
orToyCalculator
instance:\(\mathrm{CL}_{s}\): The modified \(p\)-value compared to the given threshold \(\alpha\), typically taken to be \(0.05\), defined in [1007.1727] as
\[\mathrm{CL}_{s} = \frac{\mathrm{CL}_{s+b}}{\mathrm{CL}_{b}} = \frac{p_{s+b}}{1-p_{b}}\]to protect against excluding signal models in which there is little sensitivity. In the case that \(\mathrm{CL}_{s} \leq \alpha\) the given signal model is excluded.
\(\left[\mathrm{CL}_{s+b}, \mathrm{CL}_{b}\right]\): The signal + background model hypothesis \(p\)-value
\[\mathrm{CL}_{s+b} = p_{s+b} = p\left(q \geq q_{\mathrm{obs}}\middle|s+b\right) = \int\limits_{q_{\mathrm{obs}}}^{\infty} f\left(q\,\middle|s+b\right)\,dq = 1 - F\left(q_{\mathrm{obs}}(\mu)\,\middle|\mu'\right)\]and 1 minus the background only model hypothesis \(p\)-value
\[\mathrm{CL}_{b} = 1- p_{b} = p\left(q \geq q_{\mathrm{obs}}\middle|b\right) = 1 - \int\limits_{-\infty}^{q_{\mathrm{obs}}} f\left(q\,\middle|b\right)\,dq = 1 - F\left(q_{\mathrm{obs}}(\mu)\,\middle|0\right)\]for signal strength \(\mu\) and model hypothesis signal strength \(\mu'\), where the cumulative density functions \(F\left(q(\mu)\,\middle|\mu'\right)\) are given by Equations (57) and (65) of [1007.1727] for upper-limit-like test statistic \(q \in \{q_{\mu}, \tilde{q}_{\mu}\}\). Only returned when
return_tail_probs
isTrue
.Note
The definitions of the \(\mathrm{CL}_{s+b}\) and \(\mathrm{CL}_{b}\) used are based on profile likelihood ratio test statistics. This procedure is common in the LHC-era, but differs from procedures used in the LEP and Tevatron eras, as briefly discussed in \(\S\) 3.8 of [1007.1727].
\(\mathrm{CL}_{s,\mathrm{exp}}\): The expected \(\mathrm{CL}_{s}\) value corresponding to the test statistic under the background only hypothesis \(\left(\mu=0\right)\). Only returned when
return_expected
isTrue
.\(\mathrm{CL}_{s,\mathrm{exp}}\) band: The set of expected \(\mathrm{CL}_{s}\) values corresponding to the median significance of variations of the signal strength from the background only hypothesis \(\left(\mu=0\right)\) at \((-2,-1,0,1,2)\sigma\). That is, the \(p\)-values that satisfy Equation (89) of [1007.1727]
\[\mathrm{band}_{N\sigma} = \mu' + \sigma\,\Phi^{-1}\left(1-\alpha\right) \pm N\sigma\]for \(\mu'=0\) and \(N \in \left\{-2, -1, 0, 1, 2\right\}\). These values define the boundaries of an uncertainty band sometimes referred to as the “Brazil band”. Only returned when
return_expected_set
isTrue
.a calculator: The calculator instance used in the computation of the \(p\)-values. Either an instance of
AsymptoticCalculator
orToyCalculator
, depending on the value ofcalctype
. Only returned whenreturn_calculator
isTrue
.