pyhf.infer.test_statistics.qmu_tilde#
- pyhf.infer.test_statistics.qmu_tilde(mu, data, pdf, init_pars, par_bounds, fixed_params, return_fitted_pars=False)[source]#
The “alternative” test statistic, \(\tilde{q}_{\mu}\), for establishing an upper limit on the strength parameter, \(\mu\), for models with bounded POI, as defined in Equation (16) in [1007.1727]
\begin{equation} \tilde{q}_{\mu} = \left\{\begin{array}{ll} -2\ln\tilde{\lambda}\left(\mu\right), &\hat{\mu} \leq \mu,\\ 0, & \hat{\mu} > \mu \end{array}\right. \end{equation}where \(\tilde{\lambda}\left(\mu\right)\) is the constrained profile likelihood ratio as defined in Equation (10)
\begin{equation} \tilde{\lambda}\left(\mu\right) = \left\{\begin{array}{ll} \frac{L\left(\mu, \hat{\hat{\boldsymbol{\theta}}}(\mu)\right)}{L\left(\hat{\mu}, \hat{\hat{\boldsymbol{\theta}}}(0)\right)}, &\hat{\mu} < 0,\\ \frac{L\left(\mu, \hat{\hat{\boldsymbol{\theta}}}(\mu)\right)}{L\left(\hat{\mu}, \hat{\boldsymbol{\theta}}\right)}, &\hat{\mu} \geq 0. \end{array}\right. \end{equation}Example
>>> import pyhf >>> pyhf.set_backend("numpy") >>> model = pyhf.simplemodels.uncorrelated_background( ... signal=[12.0, 11.0], bkg=[50.0, 52.0], bkg_uncertainty=[3.0, 7.0] ... ) >>> observations = [51, 48] >>> data = pyhf.tensorlib.astensor(observations + model.config.auxdata) >>> test_mu = 1.0 >>> init_pars = model.config.suggested_init() >>> par_bounds = model.config.suggested_bounds() >>> fixed_params = model.config.suggested_fixed() >>> pyhf.infer.test_statistics.qmu_tilde( ... test_mu, data, model, init_pars, par_bounds, fixed_params ... ) array(3.93824492) >>> pyhf.infer.test_statistics.qmu_tilde( ... test_mu, data, model, init_pars, par_bounds, fixed_params, return_fitted_pars=True ... ) (array(3.93824492), (array([1. , 0.97224597, 0.87553894]), array([0. , 1.0030512 , 0.96266961])))
- Parameters:
mu (Number or Tensor) – The signal strength parameter
data (
tensor
) – The data to be consideredpdf (Model) – The statistical model adhering to the schema model.json
init_pars (
list
offloat
) – The starting values of the model parameters for minimization.par_bounds (
list
oflist
/tuple
) – The extrema of values the model parameters are allowed to reach in the fit. The shape should be(n, 2)
forn
model parameters.fixed_params (
tuple
orlist
ofbool
) – The flag to set a parameter constant to its starting value during minimization.return_fitted_pars (
bool
) – Return the best-fit parameter tensors the fixed-POI and unconstrained fits have converged on (i.e. \(\mu, \hat{\hat{\theta}}\) and \(\hat{\mu}, \hat{\theta}\))
- Returns:
The calculated test statistic, \(\tilde{q}_{\mu}\)
The parameter tensors corresponding to the constrained best fit, \(\mu, \hat{\hat{\theta}}\), and the unconstrained best fit, \(\hat{\mu}, \hat{\theta}\). Only returned if
return_fitted_pars
isTrue
.
- Return type:
Tuple of a Float and a Tuple of Tensors