scipy_optimizer#
- class pyhf.optimize.opt_scipy.scipy_optimizer(*args, **kwargs)#
Bases:
pyhf.optimize.mixins.OptimizerMixin
Optimizer that uses
scipy.optimize.minimize()
.- __init__(*args, **kwargs)[source]#
Initialize the scipy_optimizer.
See
pyhf.optimize.mixins.OptimizerMixin
for other configuration options.- Parameters:
tolerance (
float
) – Tolerance for termination. See specific optimizer for detailed meaning. Default isNone
.solver_options (
dict
) – additional solver options. Seescipy.optimize.show_options()
for additional options of optimization solvers.
Attributes
- name#
- tolerance#
- solver_options#
- maxiter#
- verbose#
Methods
- _get_minimizer(objective_and_grad, init_pars, init_bounds, fixed_vals=None, do_grad=False, par_names=None)[source]#
- _minimize(minimizer, func, x0, do_grad=False, bounds=None, fixed_vals=None, options={})[source]#
Same signature as
scipy.optimize.minimize()
.- Minimizer Options:
maxiter (
int
): Maximum number of iterations. Default is100000
.verbose (
bool
): Print verbose output during minimization. Default isFalse
.method (
str
): Minimization routine. Default is'SLSQP'
.tolerance (
float
): Tolerance for termination. See specific optimizer for detailed meaning. Default isNone
.solver_options (
dict
): additional solver options. Seescipy.optimize.show_options()
for additional options of optimization solvers.
- Returns:
the fit result
- Return type:
fitresult (scipy.optimize.OptimizeResult)